Advertisement

Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor

  • Nian Liu
  • Yiyue Shi
  • Jingru Guo
  • Hai Li
  • Qiang Wang
  • Menglin Song
  • Zhiyuan Shi
  • Le He
  • Xinhui Su
  • Jin Xie
  • Xiaolian SunEmail author
Research Article
  • 41 Downloads

Abstract

Nanoparticles with effective tumor accumulation and efficient renal clearance have attracted significant interests for clinical applications. We prepared 2.5 nm tyrosine based carbon dots (TCDs) with phenolic hydroxyl groups on the surface for directly 125I labeling. The 125I labeled polyethylene glycol (PEG) functionalized TCDs (125I-TCDPEGs) showed excellent radiochemical stability both in vitro and in vivo. Due to the enhanced permeability and retention effect, these 125I-TCDPEGs demonstrated a tumor accumulation around 4%–5% of the injected dose per gram (ID/g) for U87MG, 4T1, HepG2 and MCF7 tumor-bearing mice at 1 h post-injection. Meanwhile, the 125I-TCDPEGs also could be fast renally excreted, with less than 0.6% ID/g left in the liver and spleen within 24 h. These radioactive carbon dots not only can be used for cellular fluorescence imaging due to their intrinsic optical property, but are also effective single photon emission computed tomography (SPECT) imaging agents for tumor. Together with their excellent biocompatibility and stability, we anticipate these 125I-TCDPEGs of great potential for early tumor diagnosis in clinic. What’s more, our TCDPEGs are also proved to be feasible carriers for other iodine isotopes such as 127I and 131I for different biomedical application.

Keywords

radioiodination tyrosine based carbon dots single photon emission computed tomography (SPECT) imaging fluoresecent imaging renal clearance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

X. S. acknowledges the National Key Research and Development Program of China (No. 2016YFA0203600), the National Natural Science Foundation of China (Nos. 81971738 and 81571743), the Project Program of State Key Laboratory of Natural Medicines, and the China Pharmaceutical University (No. SKLNMZZRC05).

Supplementary material

12274_2019_2549_MOESM1_ESM.pdf (3.1 mb)
Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor

References

  1. [1]
    Charlton, K. A sustainable future for nuclear imaging. Nat. Rev. Phys. 2019, 1, 530–532.CrossRefGoogle Scholar
  2. [2]
    Zeglis, B. M.; Holland, J. P.; Lebedev, A. Y.; Cantorias, M. V.; Lewis, J. S. Radiopharmaceuticals for imaging in oncology with special emphasis on positron-emitting agents In Nuclear Oncology: Pathophysiology and Clinical Applications. Strauss, H. W.; Mariani, G.; Volterrani D.; Larson S. M., Eds.; Springer: New York, 2013; pp 35–78.CrossRefGoogle Scholar
  3. [3]
    Dunphy, M. P.; Lewis, J. S. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J. Nucl. Med. 2009, 50 Suppl 1, 106S–121S.CrossRefGoogle Scholar
  4. [4]
    Park, S. M.; Aalipour, A.; Vermesh, O.; Yu, J. H.; Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014.CrossRefGoogle Scholar
  5. [5]
    Sun, X. L.; Cai, W. B.; Chen, X. Y. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res. 2015, 48, 286–294.CrossRefGoogle Scholar
  6. [6]
    Pampaloni, M. H.; Nardo, L. PET/MRI radiotracer beyond 18F-FDG. PET Clin. 2014, 9, 345–349.CrossRefGoogle Scholar
  7. [7]
    Mushtaq, S.; Jeon, J.; Shaheen, A.; Jang, B. S.; Park, S. H. Critical analysis of radioiodination techniques for micro and macro organic molecules. J. Radioanal. Nucl. Chem. 2016, 309, 859–889.Google Scholar
  8. [8]
    Cavina, L.; van der Born, D.; Klaren, P. H. M.; Feiters, M. C.; Boerman, O. C.; Rutjes, F. P. J. T. Design of radioiodinated pharmaceuticals: Structural features affecting metabolic stability towards in vivo deiodination. Eur. J. Org. Chem. 2017, 2017, 3387–3414.CrossRefGoogle Scholar
  9. [9]
    Seevers, R. H.; Counsell, R. E. Radioiodination techniques for small organic molecules. Chem. Rev. 1982, 82, 575–590.CrossRefGoogle Scholar
  10. [10]
    Bailey, G. S. Labeling of peptides and proteins by radioiodination. In Basic Protein and Peptide Protocols. Walker, J. M., Ed.; Springer: Humana Press, 1994; pp 441–448.CrossRefGoogle Scholar
  11. [11]
    Dewanjee, M. K. Methods of radioiodination reactions with several oxidizing agents. In Radioiodination: Theory, Practice, and Biomedical Applications. Dewanjee, M. K., Ed.; Springer: Boston, MA, 1992; pp 129–218.CrossRefGoogle Scholar
  12. [12]
    Yi, X.; Xu, M. Y.; Zhou, H. L.; Xiong, S. S.; Qian, R.; Chai, Z. F.; Zhao, L.; Yang, K. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. ACS Nano 2018, 12, 9142–9151.CrossRefGoogle Scholar
  13. [13]
    Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018, 11, 2196–2808.Google Scholar
  14. [14]
    Yi, X.; Yang, K.; Liang, C.; Zhong, X. Y.; Ning, P.; Song, G. S.; Wang, D. L.; Ge, C. C.; Chen, C. Y.; Chai, Z. F. et al. Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv. Funct. Mater. 2015, 25, 4689–4699.CrossRefGoogle Scholar
  15. [15]
    Phillips, E.; Penate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schoder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149.CrossRefGoogle Scholar
  16. [16]
    Zhou, M.; Li, J. J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 2015, 9, 7085–7096.CrossRefGoogle Scholar
  17. [17]
    Wen, L.; Chen, L.; Zheng, S. M.; Zeng, J. F.; Duan, G. X.; Wang, Y.; Wang, G. L.; Chai, Z. F.; Li, Z.; Gao, M. Y. Ultrasmall biocompatible WO3-x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 2016, 28, 5072–5079.CrossRefGoogle Scholar
  18. [18]
    Shen, S. D.; Jiang, D. W.; Cheng, L.; Chao, Y.; Nie, K. Q.; Dong, Z. L.; Kutyreff, C. J.; Engle, J. W.; Huang, P.; Cai, W. B. et al. Renal-clearable ultrasmall coordination polymer nanodots for chelator-free 64Cu-labeling and imaging-guided enhanced radiotherapy of cancer. ACS Nano 2017, 11, 9103–9111.CrossRefGoogle Scholar
  19. [19]
    Chen, L.; Chen, J. Y.; Qiu, S. S.; Wen, L.; Wu, Y.; Hou, Y.; Wang, Y.; Zeng, J. F.; Feng, Y.; Li, Z. et al. Biodegradable nanoagents with short biological half-life for SPECT/PAI/MRI multimodality imaging and PTT therapy of tumors. Small 2018, 14, 1702700.CrossRefGoogle Scholar
  20. [20]
    Lu, N.; Fan, W. P.; Yi, X.; Wang, S.; Wang, Z. T.; Tian, R.; Jacobson, O.; Liu, Y. J.; Yung, B. C.; Zhang, G. F. et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano 2018, 12, 1580–1591.CrossRefGoogle Scholar
  21. [21]
    Chen, D. Q.; Zhang, G. Q.; Li, R. M.; Guan, M. R.; Wang, X. Y.; Zou, T. J.; Zhang, Y.; Wang, C. R.; Shu, C. Y.; Hong, H. et al. Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release. J. Am. Chem. Soc. 2018, 140, 7373–7376.CrossRefGoogle Scholar
  22. [22]
    Feng, H.; Qian, Z. S. Functional carbon quantum dots: A versatile platform for chemosensing and biosensing. Chem. Rec. 2018, 18, 491–505.CrossRefGoogle Scholar
  23. [23]
    Roy, P.; Chen, P. C.; Periasamy, A. P.; Chen, Y. N.; Chang, H. T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications. Mater. Today 2015, 18, 447–458.CrossRefGoogle Scholar
  24. [24]
    Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.CrossRefGoogle Scholar
  25. [25]
    Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.CrossRefGoogle Scholar
  26. [26]
    Du, J. J.; Xu, N.; Fan, J. L.; Sun, W.; Peng, X. J. Carbon dots for in vivo bioimaging and theranostics. Small 2019, 15, 1805087.CrossRefGoogle Scholar
  27. [27]
    Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.CrossRefGoogle Scholar
  28. [28]
    Opacic, T.; Paefgen, V.; Lammers, T.; Kiessling, F. Status and trends in the development of clinical diagnostic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1441.CrossRefGoogle Scholar
  29. [29]
    Aherne, G. W.; James, S. L.; Marks, V. The radioiodination of bleomycin using iodogen. Clin. Chim. Acta 1982, 119, 341–343.CrossRefGoogle Scholar
  30. [30]
    Spetz, J.; Rudqvist, N.; Forssell-Aronsson, E. Biodistribution and dosimetry of free 211At, 125I–and 131I–in rats. Cancer Biother. Radiopharm. 2013, 28, 657–664.CrossRefGoogle Scholar
  31. [31]
    Cranley, K.; Bell, T. K. 125I thyroid intakes: Consideration of thyroid radiation dose, and air and water concentration limits. Int. J. Appl. Radiat. Isot. 1979, 30, 161–163.CrossRefGoogle Scholar
  32. [32]
    Zhu, A. Z.; Yoon, Y.; Liang, Z. X.; Voll, R.; Goodman, M. E.; Goodman, M. M.; Shim, H. Abstract 5227: Detection of metastatic potential by a novel small molecule F-18 PET imaging agent. Cancer Res. 2011, 71, 5227.Google Scholar
  33. [33]
    Foss, C. A.; Mease, R. C.; Fan, H.; Wang, Y. H.; Ravert, H. T.; Dannals, R. F.; Olszewski, R. T.; Heston, W. D.; Kozikowski, A. P.; Pomper, M. G. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: In vivo imaging in experimental models of prostate cancer. Clin. Cancer Res. 2005, 11, 4022–4028.CrossRefGoogle Scholar
  34. [34]
    Mankoff, D. A.; Link, J. M.; Linden, H. M.; Sundararajan, L.; Krohn, K. A. Tumor receptor imaging. J. Nucl. Med. 2008, 49 Suppl 2, 149S–163S.CrossRefGoogle Scholar
  35. [35]
    Tang, S. H.; Peng, C. Q.; Xu, J.; Du, B. J.; Wang, Q. X.; Vinluan III, R. D.; Yu, M.X.; Kim, M. J.; Zheng, J. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew. Chem., Int. Ed. 2016, 55, 16039–16043.CrossRefGoogle Scholar
  36. [36]
    Zhao, R. B.; Keen, L.; Kong, X. D. Clinical translation and safety regulation of nanobiomaterials In Nanobiomaterials: Classification, Fabrication and Biomedical Applications. Wang X. M.; Ramalingam M.; Kong, X. D., Eds.; Wiley Germany: Verlag, 2017; pp 459–479.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nian Liu
    • 1
    • 2
    • 3
  • Yiyue Shi
    • 1
  • Jingru Guo
    • 1
  • Hai Li
    • 4
  • Qiang Wang
    • 5
  • Menglin Song
    • 3
  • Zhiyuan Shi
    • 3
  • Le He
    • 4
  • Xinhui Su
    • 5
  • Jin Xie
    • 6
  • Xiaolian Sun
    • 1
    Email author
  1. 1.State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjingChina
  2. 2.Institute of Biological and Medical ImagingHelmholtz Zentrum München and Technische Universität MünchenNeuherbergGermany
  3. 3.State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public Health, Xiamen UniversityXiamenChina
  4. 4.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina
  5. 5.Department of Nuclear MedicineZhongshan Hospital Xiamen UniversityXiamenChina
  6. 6.Department of Chemistry, Bio-Imaging Research CenterUniversity of GeorgiaAthensUSA

Personalised recommendations