One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection

  • Xiqing Cheng
  • Jinhong Zhou
  • Jiayu Chen
  • Zhaoxiong Xie
  • Qin KuangEmail author
  • Lansun Zheng
Research Article


Recently, metal-organic framework (MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-based artificial enzymes are attracting increasing attention due to their high catalytic efficiency and promising application in sensing. Simple and controllable integration of enzymes or nanozymes within MOFs is crucial for achieving efficient cascade catalysis and high stability. Here, we report a facile electrochemical assisted biomimetic mineralization strategy to prepare an artificial multienzyme system for efficient electrochemical detection of biomolecules. By using the GOx@Cu-MOF/copper foam (GOx@Cu-MOF/CF) architecture as a proof of concept, efficient enzyme immobilization and cascade catalysis were achieved by in situ encapsulation of glucose oxidase (GOx) within MOFs layer grown on three-dimensional (3D) porous conducting CF via a facile one-step electrochemical assisted biomimetic mineralization strategy. Due to the bio-electrocatalytic cascade reaction mechanism, this well-designed GOx@Cu-MOF modified electrode exhibited superior catalytic activity and thermal stability for glucose sensing. Notably, the activity of GOx@Cu-MOF/CF still remained at ca. 80% after being incubated at 80 °C. In sharp contrast, the activity of the unprotected electrode was reduced to the original 10% after the same treatment. The design strategy presented here may be useful in fabricating highly stable enzyme@MOF composites applied for efficient photothermal therapy and other platform under high temperature.


metal-organic frameworks artificial multienzyme electrochemical assisted biomimetic mineralization glucose detection thermal stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0206500 and 2017YFA0206801), the National Basic Research Program of China (No. 2015CB932301), and the National Natural Science Foundation of China (Nos. 21671163, 21721001, and J1310024).

Supplementary material

12274_2019_2548_MOESM1_ESM.pdf (1.8 mb)
One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection


  1. [1]
    Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194.CrossRefGoogle Scholar
  2. [2]
    Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 2009, 5, 567–573.CrossRefGoogle Scholar
  3. [3]
    Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Willner, I. Electrically contacted bienzyme-functionalized mesoporous carbon nanoparticle electrodes: Applications for the development of dual amperometric biosensors and multifuel-driven biofuel cells. Adv. Energy Mater. 2015, 5, 1401853.CrossRefGoogle Scholar
  4. [4]
    Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.CrossRefGoogle Scholar
  5. [5]
    Chen, W. H.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat. Catal. 2018, 1, 689–695.CrossRefGoogle Scholar
  6. [6]
    Feng, D. W.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z. W.; Wan, W.; Yuan, D. Q.; Chen, Y. P.; Wang, X.; Wang, K. C. et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 2015, 6, 5979.CrossRefGoogle Scholar
  7. [7]
    Zhang, C.; Wang, X. R.; Hou, M.; Li, X. Y.; Wu, X. L.; Ge, J. Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl. Mater. Interfaces 2017, 9, 13831–13836.CrossRefGoogle Scholar
  8. [8]
    Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. GOx@ZIF-8 (NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem., Int. Ed. 2017, 56, 16082–16085.CrossRefGoogle Scholar
  9. [9]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.CrossRefGoogle Scholar
  10. [10]
    Lian, X. Z.; Chen, Y. P.; Liu, T. F.; Zhou, H. C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 2016, 7, 6969–6973.CrossRefGoogle Scholar
  11. [11]
    Lian, X. Z.; Erazo-Oliveras, A.; Pellois, J. P.; Zhou, H. C. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat. Commun. 2017, 8, 2075.CrossRefGoogle Scholar
  12. [12]
    Zheng, S. S.; Xue, H. G.; Pang, H. Supercapacitors based on metal coordination materials. Coord. Chem. Rev. 2018, 373, 2–21.CrossRefGoogle Scholar
  13. [13]
    Vijayalakshmi, A.; Karthikeyan, R.; Berchmans, S. Nonenzymatic reduction of hydrogen peroxide produced during the bioelectrocatalysis of glucose oxidase on urchin-like nanofibrillar structures of Cu on Au substrates. J. Phys. Chem. C 2010, 114, 22159–22164.CrossRefGoogle Scholar
  14. [14]
    Lee, S.; Ringstrand, B. S.; Stone, D. A.; Firestone, M. A. Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite. ACS Appl. Mater. Interfaces 2012, 4, 2311–2317.CrossRefGoogle Scholar
  15. [15]
    Ma, W. J.; Jiang, Q.; Yu, P.; Yang, L. F.; Mao, L. Q. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem. 2013, 85, 7550–7757.CrossRefGoogle Scholar
  16. [16]
    Zhang, Y. F.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015, 5, 4503–4513.CrossRefGoogle Scholar
  17. [17]
    Doonan, C.; Ricco, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Metal-organic frameworks at the biointerface: Synthetic strategies and applications. Acc. Chem. Res. 2017, 50, 1423–1432.CrossRefGoogle Scholar
  18. [18]
    Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386–3401.CrossRefGoogle Scholar
  19. [19]
    Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord. Chem. Rev. 2016, 322, 30–40.CrossRefGoogle Scholar
  20. [20]
    Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Benahmed, L.; Bourdreux, F.; Zhang, Q.; Serre, C.; Mahy, J. P.; Steunou, N. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem., Int. Ed. 2018, 57, 16141–16146.CrossRefGoogle Scholar
  21. [21]
    Hanefeld, U.; Gardossi, L.; Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 2009, 38, 453–468.CrossRefGoogle Scholar
  22. [22]
    Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K. H. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol. Adv. 2018, 36, 467–481.CrossRefGoogle Scholar
  23. [23]
    Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J. P.; Steunou, N.; Serre, C. Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection. Mater. Horiz. 2017, 4, 55–63.CrossRefGoogle Scholar
  24. [24]
    Chen, L. N.; Zhan, W. W.; Fang, H. H.; Cao, Z. M.; Yuan, C. F.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Selective catalytic performances of noble metal nanoparticle@MOF composites: The concomitant effect of aperture size and structural flexibility of MOF matrices. Chem.—Eur. J. 2017, 23, 11397–33403.CrossRefGoogle Scholar
  25. [25]
    Chen, L. N.; Zhang, X. B.; Zhou, J. H.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. A Nano-reactor based on PtNi@metal-organic framework composites loaded with polyoxometalates for hydrogenation-esterification tandem reactions. Nanoscale 2019, 11, 3292–3299.CrossRefGoogle Scholar
  26. [26]
    Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.CrossRefGoogle Scholar
  27. [27]
    Chen, G. S.; Huang, S. M.; Kou, X. X.; Wei, S. B.; Huang, S. Y.; Jiang, S. Q.; Shen, J.; Zhu, F.; Ouyang, G. F. A convenient and versatile aminoacid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1463–1467.CrossRefGoogle Scholar
  28. [28]
    Cowan, D. A.; Fernandez-Lafuente, R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb. Technol. 2011, 49, 326–346.CrossRefGoogle Scholar
  29. [29]
    Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.CrossRefGoogle Scholar
  30. [30]
    Li, P.; Modica, J. A.; Howarth, A. J.; Vargas L, E.; Moghadam, P. Z.; Snurr, R. Q.; Mrksich, M.; Hupp, J. T.; Farha, O. K. Toward design rules for enzyme immobilization in hierarchical mesoporous metal-organic frameworks. Chem 2016, 1, 154–169.CrossRefGoogle Scholar
  31. [31]
    Chen, L. N.; Wang, T.; Xue, Y. K.; Zhou, X.; Zhou, J. H.; Cheng, X. Q.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Rationally armoring PtCu alloy with metal-organic frameworks as highly selective nonenzyme electrochemical sensor. Adv. Mater. Interfaces 2018, 5, 1801168.CrossRefGoogle Scholar
  32. [32]
    Mohammad, M.; Razmjou, A.; Liang, K.; Asadnia, M.; Chen, V. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces 2019, 11, 1807–1820.CrossRefGoogle Scholar
  33. [33]
    Qiu, Q. M.; Chen, H. Y.; Wang, Y. X.; Ying, Y. B. Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord. Chem. Rev. 2019, 387, 60–78.CrossRefGoogle Scholar
  34. [34]
    Zhang, Y. F.; Hess, H. Toward rational design of high-efficiency enzyme cascades. ACS Catal. 2017, 7, 6018–6027.CrossRefGoogle Scholar
  35. [35]
    Wang, M.; Mohanty, S. K.; Mahendra, S. Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems. Acc. Chem. Res. 2019, 52, 876–885.CrossRefGoogle Scholar
  36. [36]
    Campagnol, N.; Stassen, I.; Binnemans, K.; De Vos, D. E.; Fransaer, J. Metal-organic framework deposition on dealloyed substrates. J. Mater. Chem. A 2015, 3, 19747–19753.CrossRefGoogle Scholar
  37. [37]
    Li, W. J.; Tu, M.; Cao, R.; Fischer, R. A. Metal-organic framework thin films: Electrochemical fabrication techniques and corresponding applications &; perspectives. J. Mater. Chem. A 2016, 4, 12356–12369.CrossRefGoogle Scholar
  38. [38]
    Campagnol, N.; Van Assche, T. R. C.; Li, M. Y.; Stappers, L.; Dincă, M.; Denayer, J. F. M.; Binnemans, K.; De Vos, D. E.; Fransaer, J. On the electrochemical deposition of metal-organic frameworks. J. Mater. Chem. A 2016, 4, 3914–3925.CrossRefGoogle Scholar
  39. [39]
    Li, Z. X.; Xia, H.; Li, S. M.; Pang, J. F.; Zhu, W.; Jiang Y. B. In situ hybridization of enzymes and their metal-organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale 2017, 9, 15298–15302.CrossRefGoogle Scholar
  40. [40]
    Du, Y. J.; Gao, J.; Liu, H. J.; Zhou, L. Y.; Ma, L.; He, Y.; Huang, Z. H.; Jiang, Y. J. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res. 2018, 11, 4380–4389.CrossRefGoogle Scholar
  41. [41]
    Li, Z. X.; Ding, Y.; Li, S. M.; Jiang, Y. B.; Liu Z.; Ge J. Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale 2016, 8, 17440–17445.CrossRefGoogle Scholar
  42. [42]
    Soganci, T.; Baygu, Y.; Kabay, N.; Gök, Y.; Ak, M. Comparative investigation of peripheral and nonperipheral zinc phthalocyanine-based polycarbazoles in terms of optical, electrical, and sensing properties. ACS Appl. Mater. Interfaces 2018, 10, 21654–21665.CrossRefGoogle Scholar
  43. [43]
    Wang, H. W.; Lang, Q. L.; Li, L.; Liang, B.; Tang, X. J.; Kong, L. R.; Mascini, M.; Liu, A. H. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: Construction, characterization, and its electrochemical glucose sensing application. Anal. Chem. 2013, 85, 6107–6112.CrossRefGoogle Scholar
  44. [44]
    Yang, Y.; Zhang, R. Q.; Zhou, B. N.; Song, J. Y.; Su, P.; Yang, Y. High activity and convenient ratio control: DNA-directed coimmobilization of multiple enzymes on multifunctionalized magnetic nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 37254–37263.CrossRefGoogle Scholar
  45. [45]
    Zhao, M. G.; Li, Z. L.; Han, Z. Q.; Wang, K.; Zhou, Y.; Huang, J. Y.; Ye, Z. Z. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens. Bioelectron. 2013, 49, 318–322.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiqing Cheng
    • 1
  • Jinhong Zhou
    • 1
  • Jiayu Chen
    • 1
  • Zhaoxiong Xie
    • 1
    • 2
  • Qin Kuang
    • 1
    Email author
  • Lansun Zheng
    • 1
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Pen-Tung Sah Institute of Micro-Nano Science and TechnologyXiamen UniversityXiamenChina

Personalised recommendations