A novel chitosan nanocapsule for enhanced skin penetration of cyclosporin A and effective hair growth in vivo

  • Jin Sil Lee
  • Youngmin Hwang
  • Hyeryeon Oh
  • Sunghyun Kim
  • Jin-Hwa Kim
  • Jeung-Hoon Lee
  • Yong Chul Shin
  • Giyoong TaeEmail author
  • Won Il ChoiEmail author
Research Article


Hair loss due to medical conditions, such as alopecia, male pattern baldness, and cancer chemotherapy treatment, has been a common problem for many individuals. Cyclosporin A (CsA), a fungal metabolite, has been reported to be a hair growth modulatory agent and is a potential drug for hair regeneration. However, the effect of topical application of CsA is limited by its poor water solubility. Several delivery systems developed to enhance its solubility still showed poor skin penetration. To overcome these limitations, in this study, we have developed a novel chitosan nanocapsule platform using Pluronic F127 and chitosan without any chemical crosslinking or complicated preparation steps for the enhanced water solubility and high transdermal penetration of CsA. The chitosan nanocapsules (ChiNCs) optimized in terms of structural stability by using chitosan with various molecular weights ranging from 3 to 100 kDa enhanced the skin permeation of CsA through human cadaver skin in vitro. Topical administration of the CsA loaded ChiNCs increased the hair follicles by c.a. 7 times higher than that of the control group, and effectively induced hair growth in C57BL/6 mice in vivo. These results suggest that ChiNCs could be used as a platform for effective transdermal delivery of various hydrophobic drugs.


chitosan nanocapsule cyclosporin A transdermal delivery hair growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (Nos. NRF-2018R1D1A1B07043620 and 2018R1A4A1024963) and the grant of Korea Institute of Ceramic Engineering and Technology (KICET).

Supplementary material

12274_2019_2546_MOESM1_ESM.pdf (1.8 mb)
A novel chitosan nanocapsule for enhanced skin penetration of cyclosporin A and effective hair growth in vivo


  1. [1]
    Borel, J. F.; Feurer, C.; Gubler, H. U.; Stähelin H. Biological effects of cyclosporin A: A new antilymphocytic agent. Agents Actions. 1994, 43, 179–186.CrossRefGoogle Scholar
  2. [2]
    de Arriba, G.; Calvino, M.; Benito, S.; Parra T. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol. Lett. 2013, 218, 30–38.CrossRefGoogle Scholar
  3. [3]
    N’Guessan, B. B.; Sanchez, H.; Zoll, J.; Ribera, F.; Dufour, S.; Lampert, E.; Kindo, M.; Geny, B.; Ventura-Clapier, R.; Mettauer B. Oxidative capacities of cardiac and skeletal muscles of heart transplant recipients: Mitochondrial effects of cyclosporin-A and its vehicle Cremophor-EL. Fundam. Clin. Pharmacol. 2014, 28, 151–160.CrossRefGoogle Scholar
  4. [4]
    Jiang, H.; Yamamoto, S.; Kato, R. Induction of anagen in telogen mouse skin by topical application of FK506, a potent immunosuppressant. J. Invest. Dermatol. 1995, 104, 523–525.CrossRefGoogle Scholar
  5. [5]
    Maurer, M.; Handjiski, B.; Paus, R. Hair growth modulation by topical immunophilin ligands: Induction of anagen, inhibition of massive catagen development, and relative protection from chemotherapy-induced alopecia. Am. J. Pathol. 1997, 150, 1433–1441.Google Scholar
  6. [6]
    Paus, R.; Stenn, K. S.; Link, R. E. The induction of anagen hair growth in telogen mouse skin by cyclosporine A administration. Lab. Invest. 1989, 60, 365–369.Google Scholar
  7. [7]
    Horsley, V.; Aliprantis, A. O.; Polak, L.; Glimcher, L. H.; Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell. 2008, 132, 299–310.CrossRefGoogle Scholar
  8. [8]
    Paus, R.; Handjiski, B.; Eichmuller, S.; Czarnetzki, B. M. Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am. J. Pathol. 1994, 144, 719–734.Google Scholar
  9. [9]
    Sawada, M.; Terada, N.; Taniguchi, H.; Tateishi, R.; Mori, Y. Cyclosporin A stimulates hair growth in nude mice. Lab. Invest. 1987, 56, 684–686.Google Scholar
  10. [10]
    Yamamoto, S.; Kato, R. Hair growth-stimulating effects of cyclosporin A and FK506, potent immunosuppressants. J. Dermatol. Sci. 1994, 7, S47–S54.CrossRefGoogle Scholar
  11. [11]
    Xu, W. R.; Fan, W. X.; Yao, K. Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model. J. Biomed. Mater. Res. 2012, 26, 372–380.Google Scholar
  12. [12]
    Ezure, T.; Suzuki, Y. Involvement of sonic hedgehog in cyclosporine A induced initiation of hair growth. J. Dermatol. Sci. 2007, 47, 168–170.CrossRefGoogle Scholar
  13. [13]
    Lan, S. W.; Liu, F. L.; Zhao, G. F.; Zhou, T.; Wu, C. L.; Kou, J. N.; Fan, R. R.; Qi, X. J.; Li, Y. H.; Jiang, Y. X. et al. Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: A new mechanism. Fundam. Clin. Pharmacol. 2015, 29, 191–203.CrossRefGoogle Scholar
  14. [14]
    González, A.; Ravassa, S.; Beaumont, J.; López, B.; Díez, J. New targets to treat the structural remodeling of the myocardium. J. Am. Coll. Cardiol. 2011, 58, 1833–1843.CrossRefGoogle Scholar
  15. [15]
    Polster, B. M.; Basañez, G.; Etxebarria, A.; Hardwick, J. M.; Nicholls, D. G. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J. Biol. Chem. 2005, 280, 6447–6454.CrossRefGoogle Scholar
  16. [16]
    Jain, S.; Mittal, A.; Jain, A. K.; Mahajan, R. R.; Singh, D. Cyclosporin a loaded PLGA nanoparticle: Preparation, optimization, in-vitro characterization and stability studies. Curr. Nanosci. 2010, 6, 422–431.CrossRefGoogle Scholar
  17. [17]
    Watanabe, S.; Mochizuki, A.; Wagatsuma, K.; Kobayashi, M.; Kawa, Y.; Takahashi, H. Hair growth on nude mice due to cyclosporin A. J. Dermatol. 1991, 18, 714–719.CrossRefGoogle Scholar
  18. [18]
    Onoue, S.; Sato, H.; Kawabata, Y.; Mizumoto, T.; Hashimoto, N.; Yamada, S. In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. J. Control. Release 2009, 138, 16–23.CrossRefGoogle Scholar
  19. [19]
    Al-Meshal, M. A.; Khidr, S. H.; Bayomi, M. A.; Al-Angary, A. A. Oral administration of liposomes containing cyclosporine: A pharmacokinetic study. Int. J. Pharm. 1998, 168, 163–168.CrossRefGoogle Scholar
  20. [20]
    Müller, R. H.; Runge, S. A.; Ravelli, V.; Thünemann, A. F.; Mehnert, W.; Souto, E. B. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 2008, 68, 535–544.CrossRefGoogle Scholar
  21. [21]
    Italia, J. L.; Bhatt, D. K.; Bhardwaj, V.; Tikoo, K.; Ravi Kumar M. N. V. PLGA nanoparticles for oral delivery of cyclosporine: Nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®. J. Control. Release 2007, 119, 197–206.CrossRefGoogle Scholar
  22. [22]
    Wu, J.; Zhao, L. L.; Xu, X. D.; Bertrand, N. C.; Choi, W. I.; Yameen, B. S.; Shi, J. J.; Shah, V.; Mulvale, M.; MacLean, J. L. et al. Hydrophobic cysteine poly(disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angew. Chem., Int. Ed. 2015, 54, 9218–9223.CrossRefGoogle Scholar
  23. [23]
    Zheng, Y. H.; You, X. R.; Guan, S. Y.; Huang, J.; Wang, L. Y.; Zhang, J. A.; Wu, J. Poly(Ferulic Acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater. 2019, 29, 1808646CrossRefGoogle Scholar
  24. [24]
    Choi, W. I.; Lee, J. H.; Kim, J. Y.; Kim, J. C.; Kim, Y. H.; Tae, G. Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J. Control. Release 2012, 157, 272–278.CrossRefGoogle Scholar
  25. [25]
    Sapra, B.; Jain, S.; Tiwary, A. K. Effect of Asparagus racemosus extract on transdermal delivery of carvedilol: A mechanistic study. AAPS PharmSciTech. 2009, 10, 199–210.CrossRefGoogle Scholar
  26. [26]
    Smith, J.; Wood, E.; Dornish, M. Effect of chitosan an epithelial cell tight junctions. Pharm. Res. 2004, 21, 43–49.CrossRefGoogle Scholar
  27. [27]
    He, W.; Guo, X. X.; Zhang, M. Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int. J. Pharm. 2008, 356, 82–87.CrossRefGoogle Scholar
  28. [28]
    Biruss, B.; Valenta, C. Skin permeation of different steroid hormones from polymeric coated liposomal formulation. Eur. J. Pharm. Biopharm. 2006, 62, 210–219.CrossRefGoogle Scholar
  29. [29]
    Mohammed, M. A.; Syeda, J. T. M.; Wasan, K. M.; Wasan, E. K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017, 9, 53.CrossRefGoogle Scholar
  30. [30]
    Tu, Y.; Wang, X.; Lu, Y.; Zhang, H.; Yu, Y.; Chen, Y.; Liu, J.; Sun, Z.; Cui, L.; Gao, J. et al. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret. Int. J. Nanomedicine 2016, 11, 5549–5561.CrossRefGoogle Scholar
  31. [31]
    He, W.; Guo, X. X.; Xiao, L. H.; Feng, M. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int. J. Pharm. 2009, 382, 234–243.CrossRefGoogle Scholar
  32. [32]
    Alishahi, A.; Mirvaghefi, A.; Tehrani, M. R.; Farahmand, H.; Koshio, S.; Dorkoosh, F. A.; Elsabee, M. Z. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr. Polym. 2011, 86, 142–146.CrossRefGoogle Scholar
  33. [33]
    Hembram, K. C.; Prabha, S.; Chandra, R.; Ahmed, B.; Nimesh, S. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol. 2016, 44, 305–314.CrossRefGoogle Scholar
  34. [34]
    Zhuo, Y.; Han, J.; Tang, L.; Liao, N.; Gui, G. F.; Chai, Y. Q.; Yuan, R. Quenching of the emission of peroxydisulfate system by ferrocene functionalized chitosan nanoparticles: A sensitive “signal off” electro-chemiluminescence immunosensor. Sens. Actuators, B: Chem. 2014, 192, 791–795.CrossRefGoogle Scholar
  35. [35]
    Chen, Y.; Mohanraj, V. J.; Wang, F.; Benson, H. A. E. Designing chitosandextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech 2007, 8, 131–139.CrossRefGoogle Scholar
  36. [36]
    Tiyaboonchai, W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ. J. 2003, 11, 51–66.Google Scholar
  37. [37]
    Niwa, T.; Takeuchi, H.; Hino, T.; Kunou, N.; Kawashima, Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control. Release 1993, 25, 89–98.CrossRefGoogle Scholar
  38. [38]
    Vila, A.; Sánchez, A.; Tobío, M.; Calvo, P.; Alonso, M. J. Design of biodegradable particles for protein delivery. J. Control. Release 2002, 78, 15–24.CrossRefGoogle Scholar
  39. [39]
    Choi, W. I.; Kamaly, N.; Riol-Blanco, L.; Lee, I. H.; Wu, J.; Swami, A.; Vilos, C.; Yameen, B.; Yu, M.; Shi, J. J. et al. A solvent-free thermosponge nanoparticle platform for efficient delivery of labile proteins. Nano Lett. 2014, 14, 6449–6455.CrossRefGoogle Scholar
  40. [40]
    Cheon, J. W.; Shim, C. K.; Chung, S. J.; Kim, D. D. Effect of tripolyphosphate (TPP) on the controlled release of cyclosporin a from chitosan-coated lipid microparticles. J. Korean Pharm. Invest. 2009, 39, 59–63.CrossRefGoogle Scholar
  41. [41]
    Kapoor, Y.; Dixon, P.; Sekar, P.; Chauhan, A. Incorporation of drug particles for extended release of Cyclosporine A from poly-hydroxyethyl methacrylate hydrogels. Eur. J. Pharm. Biopharm. 2017, 120, 73–79.CrossRefGoogle Scholar
  42. [42]
    MacCuspie, R. I. Colloidal stability of silver nanoparticles in biologically relevant conditions. J. Nanopart. Res. 2011, 13, 2893–2908.CrossRefGoogle Scholar
  43. [43]
    Huang, M.; Khor, E.; Lim, L. Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharm. Res. 2004, 21, 344–353.CrossRefGoogle Scholar
  44. [44]
    Wikramanayake, T. C.; Amini, S.; Simon, J.; Mauro, L. M.; Elgart, G.; Schachner, L. A.; Jimenez, J. J. A novel rat model for chemotherapy-induced alopecia. Clin. Exp. Dermatol. 2012, 37, 284–289.CrossRefGoogle Scholar
  45. [45]
    Lin, W. H.; Xiang, L. J.; Shi, H. X.; Zhang, J.; Jiang, L. P.; Cai, P. T.; Lin, Z. L.; Lin, B. B.; Huang, Y.; Zhang, H. L. et al. Fibroblast growth factors stimulate hair growth through β-catenin and Shh expression in C57BL/6 mice. BioMed Res. Int. 2015, 2015, 730139.Google Scholar
  46. [46]
    Tong, T.; Kim, N.; Park, T. Topical application of oleuropein induces anagen hair growth in telogen mouse skin. PLoS One 2015, 10, e0129578.CrossRefGoogle Scholar
  47. [47]
    del Pozo-Rodríguez, A.; Solinís, M. A.; Gascón, A. R.; Pedraz, J. L. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur. J. Pharm. Biopharm. 2009, 71, 181–189.CrossRefGoogle Scholar
  48. [48]
    Norouzi, M.; Boroujeni, S. M.; Omidvarkordshouli, N.; Soleimani, M. Advances in skin regeneration: Application of electrospun scaffolds. Adv. Healthc. Mater. 2015, 4, 1114–1133.CrossRefGoogle Scholar
  49. [49]
    Hasanovic, A.; Zehl, M.; Reznicek, G.; Valenta, C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J. Pharm. Pharmacol. 2009, 61, 1609–1616.CrossRefGoogle Scholar
  50. [50]
    Nair, S. S. Chitosan-based transdermal drug delivery systems to overcome skin barrier functions. J. Drug Deliv. Ther. 2019, 9, 266–270.CrossRefGoogle Scholar
  51. [51]
    Sezer, A. D.; Cevher, E. Topical drug delivery using chitosan nano- and microparticles. Expert Opin. Drug Deliv. 2012, 9, 1129–1146.CrossRefGoogle Scholar
  52. [52]
    Roy, M. K.; Takenaka, M.; Kobori, M.; Nakahara, K.; Isobe, S.; Tsushida, T. Apoptosis, necrosis and cell proliferation -inhibition by cyclosporine A in U937 cells (a human monocytic cell line). Pharmacol. Res. 2006, 53, 293–302.CrossRefGoogle Scholar
  53. [53]
    Wongmekiat, O.; Gomonchareonsiri, S.; Thamprasert, K. Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A. Fundam. Clin. Pharmacol. 2011, 25, 619–626.CrossRefGoogle Scholar
  54. [54]
    Yang, G. A.; Chen, Q. A.; Wen, D.; Chen, Z. W.; Wang, J. Q.; Chen, G. J.; Wang, Z. J.; Zhang, X. D.; Zhang, Y. Q.; Hu, Q. Y. et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 2019, 13, 4354–4360.CrossRefGoogle Scholar
  55. [55]
    Begum, S.; Gu, L. J.; Lee, M. R.; Li, Z.; Li, J. J.; Hossain, M. J.; Wang, Y. B.; Sung, C. K. In vivo hair growth-stimulating effect of medicinal plant extract on BALB/c nude mice. Pharm. Biol. 2015, 53, 1098–1103.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jin Sil Lee
    • 1
    • 2
  • Youngmin Hwang
    • 2
  • Hyeryeon Oh
    • 1
    • 2
  • Sunghyun Kim
    • 1
  • Jin-Hwa Kim
    • 3
  • Jeung-Hoon Lee
    • 3
  • Yong Chul Shin
    • 3
    • 4
  • Giyoong Tae
    • 2
    Email author
  • Won Il Choi
    • 1
    Email author
  1. 1.Center for Convergence Bioceramic Materials, Convergence R&D DivisionKorea Institute of Ceramic Engineering and TechnologyChungbukRepublic of Korea
  2. 2.School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  3. 3.SKINMED Co., Ltd.DaejeonRepublic of Korea
  4. 4.Amicogen, Inc.JinjuRepublic of Korea

Personalised recommendations