Advertisement

A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor

  • Jie Hu
  • Xianjie Pu
  • Hongmei Yang
  • Qixuan Zeng
  • Qian Tang
  • Dazhi Zhang
  • Chenguo Hu
  • Yi XiEmail author
Research Article

Abstract

Triboelectric nanogenerators (TENGs) have been developed rapidly into an efficient wind energy collection equipment. Reducing the friction wear and energy loss in breeze energy collection is a research direction worthy of attention. Herein, a flutter-effect-based triboelectric nanogenerator (FE-TENG) is designed to collect the breeze energy at low wind speed from arbitrary directions. Distinguishing from previous wind-driven TENGs, the wind-driven part of this device is separated from the TENG units, which not only avoids the wear of friction layers caused by direct wind contact but also reduces the energy loss, therefore, relatively stable electric outputs are obtained with VOC ~ 281 V, ISC ~ 13.4 μA, QSC ~ 143 nC, and output power ~ 4 mW at the wind speed of 4.5 m/s, respectively. In addition, a real-time wind speed monitoring system based on LabVIEW software with high sensitivity and fast response to wind is achieved relying on the excellent linear relationship between wind speed and electrical output signal. Furthermore, it has been successfully applied as power sources for portable electronics, about 170 commercial light-emitting devices (LEDs) are lighted and a digital watch is successfully driven at the wind speed of 2.9 m/s. This work not only provides a new structure and idea for the future collection of clean and sustainable breeze energy from arbitrary directions but also has great potential in the field of self-powered systems.

Keywords

flutter effect triboelectric nanogenerator arbitrary directions wind speed sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2016YFA0202704), the National Natural Science Foundation of China (Nos. 51772036 and 51572040), the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0068) the Fundamental Research Funds for the Central Universities (Nos. CYFH201821 and CYFH201822).

Supplementary material

Supplementary material, approximately 36.4 MB.

Supplementary material, approximately 19.1 MB.

Supplementary material, approximately 29.9 MB.

12274_2019_2545_MOESM4_ESM.pdf (1010 kb)
A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor

References

  1. [1]
    Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renew. Sustain. Energy Rev. 2000, 4, 315–374.CrossRefGoogle Scholar
  2. [2]
    Abbey, C.; Joos, G. Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 2007, 43, 769–776.CrossRefGoogle Scholar
  3. [3]
    Kaldellis, J. K.; Zafirakis, D. The wind energy (r)evolution: A short review of a long history. Renew. Energy2011, 36, 1887–1901.CrossRefGoogle Scholar
  4. [4]
    Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.CrossRefGoogle Scholar
  5. [5]
    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature2012, 488, 294–303.CrossRefGoogle Scholar
  6. [6]
    Tuller, S. E.; Brett, A. C. The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis. J. Climate Appl. Meteor. 1984, 23, 124–134.CrossRefGoogle Scholar
  7. [7]
    Wagner, S.; Bareiß, R.; Guidati, G. Wind Turbine Noise; Springer: Berlin, Heidelberg, 1996.CrossRefGoogle Scholar
  8. [8]
    Kammen, D. M.; Sunter, D. A. City-integrated renewable energy for urban sustainability. Science2016, 352, 922–928.CrossRefGoogle Scholar
  9. [9]
    Harding, G.; Harding, P.; Wilkins, A. Wind turbines, flicker, and photosensitive epilepsy: Characterizing the flashing that may precipitate seizures and optimizing guidelines to prevent them. Epilepsia2008, 49, 1095–1098.CrossRefGoogle Scholar
  10. [10]
    Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.CrossRefGoogle Scholar
  11. [11]
    He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.CrossRefGoogle Scholar
  12. [12]
    Liu, J. M.; Cui, N. Y.; Gu, L.; Chen, X. B.; Bai, S.; Zheng, Y. B.; Hu, C. X.; Qin, Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale2016, 8, 4938- 4944.CrossRefGoogle Scholar
  13. [13]
    Liu, G. L.; Chen, J.; Guo, H. Y.; Lai, M. H.; Pu, X. J.; Wang, X.; Hu, C. G. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Res. 2018, 11, 633–641.CrossRefGoogle Scholar
  14. [14]
    Yang, H. M.; Wang, M. F.; Deng, M. M.; Guo, H. Y.; Zhang, W.; Yang, H. K.; Xi, Y.; Li, X. G.; Hu, C. G.; Wang, Z. L. A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy2019, 56, 300–306.CrossRefGoogle Scholar
  15. [15]
    Cao, R.; Zhou, T.; Wang, B.; Yin, Y. Y.; Yuan, Z. Q.; Li, C. J.; Wang, Z. L. Rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano2017, 11, 8370–8378.CrossRefGoogle Scholar
  16. [16]
    Wang, J. Y.; Ding, W. B.; Pan, L.; Wu, C. S.; Yu, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano2018, 12, 3954–3963.CrossRefGoogle Scholar
  17. [17]
    Ahmed, A.; Hassan, I.; Hedaya, M.; Abo El-Yazid, T.; Zu, J.; Wang, Z. L. Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy2017, 36, 21–29.CrossRefGoogle Scholar
  18. [18]
    Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy2015, 14, 217–225.CrossRefGoogle Scholar
  19. [19]
    Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano2013, 7, 7119–7125.CrossRefGoogle Scholar
  20. [20]
    Argentina, M.; Mahadevan, L. Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. USA2005, 102, 1829–1834.Google Scholar
  21. [21]
    Carruthers, A.; Filippone, A. Aerodynamic drag of streamers and flags. J. Aircr. 2005, 42, 976–982.CrossRefGoogle Scholar
  22. [22]
    Watanabe, Y.; Isogai, K.; Suzuki, S.; Sugihara, M. A theoretical study of paper flutter. J. Fluids Struct. 2002, 16, 543–560.CrossRefGoogle Scholar
  23. [23]
    Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter; NACA: Langley Field, VA, USA, 1935.Google Scholar
  24. [24]
    Theodorsen, T.; Garrick, I. E. Mechanism of Flutter a Theoretical and Experimental Investigation of the Flutter Problem; NACA: Langley Field, VA, USA, 1940.Google Scholar
  25. [25]
    Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.CrossRefGoogle Scholar
  26. [26]
    Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.CrossRefGoogle Scholar
  27. [27]
    Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. S.; Park, Y. J.; Choong, C.; Kim, J. B.; Wang, Z. L.; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.Google Scholar
  28. [28]
    Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano2015, 9, 9554–9563.CrossRefGoogle Scholar
  29. [29]
    Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A2014, 2, 2079–2087.CrossRefGoogle Scholar
  30. [30]
    Zhao, Z. F.; Pu, X.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano2016, 10, 1780–1787.CrossRefGoogle Scholar
  31. [31]
    Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano2013, 7, 9461–9468.CrossRefGoogle Scholar
  32. [32]
    Diaz, A. F.; Felix-Navarro, R. M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277–290.CrossRefGoogle Scholar
  33. [33]
    Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533–1537.CrossRefGoogle Scholar
  34. [34]
    Sun, J.; Li, W.; Liu, G. X.; Li, W. J.; Chen, M. F. Triboelectric nano-generator based on biocompatible polymer materials. J. Phys. Chem. C2015, 119, 9061–9068.CrossRefGoogle Scholar
  35. [35]
    Wang, F. X.; Hou, Q. M.; Bo, J. L.; Pan, J. Study on control system of low speed PM generator direct driven by wind turbine. In Proceedings of 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 2005; pp 1009–1012.Google Scholar
  36. [36]
    Zhang, K. W.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 2016, 9, 974–984.CrossRefGoogle Scholar
  37. [37]
    He, C.; Zhu, W. J.; Gu, G. Q.; Jiang, T.; Xu, L.; Chen, B. D.; Han, C. B.; Li, D. C.; Wang, Z. L. Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 2018, 11, 1157–1164.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Hu
    • 1
  • Xianjie Pu
    • 1
  • Hongmei Yang
    • 1
  • Qixuan Zeng
    • 1
  • Qian Tang
    • 1
  • Dazhi Zhang
    • 1
  • Chenguo Hu
    • 1
  • Yi Xi
    • 1
    Email author
  1. 1.Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing UniversityChongqingChina

Personalised recommendations