Advertisement

Nano Research

, Volume 12, Issue 11, pp 2908–2917 | Cite as

Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries

  • Wenda Li
  • Dezhu Wang
  • Zihao Song
  • Zhijiang Gong
  • Xiaosong Guo
  • Jing Liu
  • Zhonghua ZhangEmail author
  • Guicun LiEmail author
Research Article

Abstract

High energy density and low-cost lithium-sulfur batteries have been considered as one of the most promising candidates for next-generation energy storage systems. However, the intrinsic problems of the sulfur cathode severely restrict their further practical application. Here, a unique double-shell architecture composed of hollow carbon spheres@interlayer-expanded and sulfur-enriched MoS2+x nanocoating composite has been developed as an efficient sulfur host. A uniform precursor coating derived from heteropolyanions-induced polymerization of pyrrole leads to space confinement effect during the in-situ sulfurization process, which generates the interlayer-expanded and sulfur-enriched MoS2+x nanosheets on amorphous carbon hollow spheres. This new sulfur host possesses multifarious merits including sufficient voids for loading sulfur active materials, high electronic conductivity, and fast lithium-ion diffusive pathways. In addition, additional active edge sites of MoS2+x accompanied by the nitrogen-doped carbon species endow the sulfur host with immobilizing and catalyzing effects on the soluble polysulfide species, dramatically accelerating their conversion kinetics and re-utilization. The detailed defect-induced interface catalytic reaction mechanism is firstly proposed. As expected, the delicately-designed sulfur host exhibits an outstanding initial discharge capacity of 1,249 mAh·g−1 at 0.2 C and a desirable rate performance (593 mAh·g−1 at 5.0 C), implying its great prospects in achieving superior electrochemical performances for advanced lithium sulfur batteries.

Keywords

Few-layered MoS2+x double-shell architecture sulfur enriched MoS2+x nanocoating lithium-sulfur batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51672146 and 21805157) and the Natural Science Foundation of Shandong Province (No. ZR2018BEM011).

Supplementary material

12274_2019_2536_MOESM1_ESM.pdf (3.4 mb)
Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries

References

  1. [1]
    Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy2016, 1, 16132.Google Scholar
  2. [2]
    Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P. Composite li metal anode with vertical graphene host for high performance Li-S batteries. J. Power Sources2018, 374, 205–210.Google Scholar
  3. [3]
    Liu, X. J.; Qian, T.; Liu, J.; Wang, M. F.; Chen, H. L.; Yan, C. L. High coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Mater.2019, 17, 260–265.Google Scholar
  4. [4]
    Hong, X. J.; Tang, X. Y.; Wei, Q.; Song, C. L.; Wang, S. Y.; Dong, R. F.; Cai, Y. P.; Si, L. P. Efficient encapsulation of small S2–4 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries. ACS Appl. Mater. Interfaces2018, 10, 9435–9443.Google Scholar
  5. [5]
    Zhang, H.; Gao, Q. M.; Qian, W. W.; Xiao, H.; Li, Z. Y.; Ma, L.; Tian, X. H. Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li-S battery cathode. ACS Appl. Mater. Interfaces2018, 10, 18726–18733.Google Scholar
  6. [6]
    Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun.2017, 8, 14627.Google Scholar
  7. [7]
    Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun.2016, 7, 10601.Google Scholar
  8. [8]
    Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for highperformance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed.2015, 54, 4325–4329.Google Scholar
  9. [9]
    Yan, L. J.; Luo, N. N.; Kong, W. B.; Luo, S.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Duan, W. H.; Wang, J. P. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J. Power Sources2018, 389, 169–177.Google Scholar
  10. [10]
    Ma, Z. L.; Li, Z.; Hu, K.; Liu, D. D.; Huo, J.; Wang, S. Y. The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer. J. Power Sources2016, 325, 71–78.Google Scholar
  11. [11]
    Chen, A.; Liu, W. F.; Hu, H.; Chen, T.; Ling, B. L.; Liu, K. Y. Three-dimensional TiO2-B nanotubes/carbon nanotubes intertwined network as sulfur hosts for high performance lithium-sulfur batteries. J. Power Sources2018, 400, 23–30.Google Scholar
  12. [12]
    Hou, D.; Zhu, S. Y.; Tian, H.; Wei, H.; Feng, X. L.; Mai, Y. Y. Two-dimensional sandwich-structured mesoporous Mo2C/carbon/graphene nanohybrids for efficient hydrogen production electrocatalysts. ACS Appl. Mater. Interfaces2018, 10, 40800–40807.Google Scholar
  13. [13]
    Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res.2016, 9, 240–248.Google Scholar
  14. [14]
    Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res.2018, 11, 1238–1246.Google Scholar
  15. [15]
    Tang, H. T.; Yang, J. L.; Zhang, G. X.; Liu, C. K.; Wang, H.; Zhao, Q. H.; Hu, J. T.; Duan, Y. D.; Pan, F. Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li-S batteries. Nanoscale2018, 10, 386–395.Google Scholar
  16. [16]
    Liu, Y. Q.; Yan, Y.; Li, K.; Yu, Y.; Wang, Q. H.; Liu, M. K. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures. Chem. Commun.2019, 55, 1084–1087.Google Scholar
  17. [17]
    Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res.2015, 8, 2663–2675.Google Scholar
  18. [18]
    Xu, F.; Tang, Z. W.; Huang, S. Q.; Chen, L. Y.; Liang, Y. R.; Mai, W. C.; Zhong, H.; Fu, R. W.; Wu, D. C. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun.2015, 6, 7221.Google Scholar
  19. [19]
    Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces2018, 10, 37955–37962.Google Scholar
  20. [20]
    Yang, Y.; Wang, S. T.; Lin, S.; Li, Y. T.; Zhang, W. Y.; Chao, Y. G.; Luo, M. C.; Xing, Y.; Wang, K.; Yang, C. et al. Rational design of hierarchical TiO2/epitaxially aligned MoS2-carbon coupled interface nanosheets core/shell architecture for ultrastable sodium-ion and lithium-sulfur batteries. Small Methods2018, 2, 1800119.Google Scholar
  21. [21]
    Kim, A. Y.; Kim, M. K.; Kim, J. Y.; Wen, Y. R.; Gu, L.; Dao, V. D.; Choi, H. S.; Byun, D.; Lee, J. K. Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Res.2017, 10, 2083–2095.Google Scholar
  22. [22]
    Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol.2018, 13, 337–344.Google Scholar
  23. [23]
    Guo, P. Q.; Liu, D. Q.; Liu, Z. J.; Shang, X. N.; Liu, Q. M.; He, D. Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta2017, 256, 28–36.Google Scholar
  24. [24]
    Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci.2017, 10, 1476–1486.Google Scholar
  25. [25]
    Wu, J. Y.; Li, X. W.; Zeng, H. X.; Xue, Y.; Chen, F. Y.; Xue, Z. G.; Ye, Y. S.; Xie, X. L. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 7897–7906.Google Scholar
  26. [26]
    Li, B.; Xu, H. F.; Ma, Y.; Yang, S. B. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Nanoscale Horiz.2019, 4, 77–98.Google Scholar
  27. [27]
    Tang, W.; Chen, Z. X.; Tian, B. B.; Lee, H. W.; Zhao, X. X.; Fan, X. F.; Fan, Y. C.; Leng, K.; Peng, C. X.; Kim, M. H. et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes. J. Am. Chem. Soc.2017, 139, 10133–10141.Google Scholar
  28. [28]
    Zhang, Y. L.; Mu, Z. J.; Yang, C.; Xu, Z. K.; Zhang, S.; Zhang, X. Y.; Li, Y. J.; Lai, J. P.; Sun, Z. H.; Yang, Y. et al. Rational design of mxene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater.2018, 28, 1707578.Google Scholar
  29. [29]
    Lv, J. L.; Yang, M.; Liang, T. X.; Ken, S.; Hideo, M. The effect of reduced graphene oxide on MoS2 for the hydrogen evolution reaction in acidic solution. Chem. Phys. Lett.2017, 678, 212–215.Google Scholar
  30. [30]
    Sánchez, V.; Benavente, E.; Ana, M. A.; González, G. High electronic conductivity molybdenum disulfide-dialkylamine nanocomposites. Chem. Mater.1999, 11, 2296–2298.Google Scholar
  31. [31]
    Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater.2013, 25, 5807–5813.Google Scholar
  32. [32]
    Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science2018, 359, 206–210.Google Scholar
  33. [33]
    Zhong, Y.; Zhuang, Q. Y.; Mao, C. M.; Xu, Z. Y.; Guo, Z. Y.; Li, G. C. Vapor phase sulfurization synthesis of interlayer-expanded MoS2@C hollow nanospheres as a robust anode material for lithium-ion batteries. J. Alloys Compd.2018, 745, 8–15.Google Scholar
  34. [34]
    Sun, H. H.; Ji, X. Y.; Qiu, Y. F.; Zhang, Y. Y.; Ma, Z.; Gao, G. G.; Hu, P. A. Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance. J. Alloys Compd.2019, 777, 514–523.Google Scholar
  35. [35]
    Guo, Y. X.; Zhang, X. Y.; Zhang, X. P.; You, T. Y. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J. Mater. Chem. A2015, 3, 15927–15934.Google Scholar
  36. [36]
    Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun.2015, 6, 7493.Google Scholar
  37. [37]
    Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small2015, 11, 300–305.Google Scholar
  38. [38]
    Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small2017, 13, 1701471.Google Scholar
  39. [39]
    Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Wu, Z. Y.; Zeng, P.; Huang, C.; Wang, Y. MoS2-coated N-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries. ACS Sustainable Chem. Eng. 2018, 6, 16828–16837.Google Scholar
  40. [40]
    Wei, Y. J.; Kong, Z. K.; Pan, Y. K.; Cao, Y. Q.; Long, D. H.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A2018, 6, 5899–5909.Google Scholar
  41. [41]
    Zhao, X.; Zhu, H.; Yang, X. R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale2014, 6, 10680–10685.Google Scholar
  42. [42]
    Zhang, Z. H.; Xu, H. M.; Cui, Z. L.; Hu, P.; Chai, J. C.; Du, H. P.; He, J. J.; Zhang, J. J.; Zhou, X. H.; Han, P. X. et al. High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A2016, 4, 2277–2285.Google Scholar
  43. [43]
    Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA2017, 114, 840–845.Google Scholar
  44. [44]
    Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta2013, 97, 42–51.Google Scholar
  45. [45]
    Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater.2018, 28, 1707536.Google Scholar
  46. [46]
    Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Amal, R.; Wang, S. G.; Cheng, H. M.; Li, F. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater.2018, 10, 56–61.Google Scholar
  47. [47]
    Hu, L. Y.; Dai, C. L.; Lim, J. M.; Chen, Y. M.; Lian, X.; Wang, M. Q.; Li, Y.; Xiao, P. H.; Henkelman, G.; Xu, M. W. A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries. Chem. Sci.2018, 9, 666–675.Google Scholar
  48. [48]
    Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater.2017, 29, 1605838.Google Scholar
  49. [49]
    Zhang, H.; Tian, D. X.; Zhao, Z. B.; Liu, X. G.; Hou, Y. N.; Tang, Y. J.; Liang, J. J.; Zhang, Z. C.; Wang, X. Z.; Qiu, J. S. Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium-sulfur batteries. Energy Storage Mater.2019, 21, 210–218.Google Scholar
  50. [50]
    Li, S.; Cen, Y.; Xiang, Q.; Aslam, M. K.; Hu, B. B.; Li, W.; Tang, Y.; Yu, Q.; Liu, Y. P.; Chen, C. G. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 1658–1668.Google Scholar
  51. [51]
    Chang, Z.; Dou, H.; Ding, B.; Wang, J.; Wang, Y.; Hao, X. D.; MacFarlane, D. R. Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries. J. Mater. Chem. A2017, 5, 250–257.Google Scholar
  52. [52]
    Gu, X. X.; Lai, C.; Liu, F.; Yang, W. L.; Hou, Y. L.; Zhang, S. Q. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J. Mater. Chem. A2015, 3, 9502–9509.Google Scholar
  53. [53]
    Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun.2014, 5, 5002.Google Scholar
  54. [54]
    Zhang, Y. Z.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery. ACS Appl. Mater. Interfaces2018, 10, 8749–8757.Google Scholar
  55. [55]
    Zhang, J.; Guo, J. X.; Xia, Y.; Gan, Y. P.; Huang, H.; Liang, C.; Du, G. H.; Tao, X. Y.; Zhang, W. K. Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium-sulfur batteries. New J. Chem.2019, 43, 1380–1387.Google Scholar
  56. [56]
    Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. Highperformance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res.2017, 10, 3698–3705.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenda Li
    • 1
  • Dezhu Wang
    • 1
  • Zihao Song
    • 1
  • Zhijiang Gong
    • 1
  • Xiaosong Guo
    • 1
  • Jing Liu
    • 1
  • Zhonghua Zhang
    • 1
    Email author
  • Guicun Li
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations