Advertisement

Nano Research

, Volume 12, Issue 11, pp 2900–2907 | Cite as

A DNA origami plasmonic sensor with environment-independent read-out

  • Valentina MasciottiEmail author
  • Luca Piantanida
  • Denys Naumenko
  • Heinz Amenitsch
  • Mattia Fanetti
  • Matjaž Valant
  • Dongsheng Lei
  • Gang Ren
  • Marco LazzarinoEmail author
Research Article

Abstract

DNA origami is a promising technology for its reproducibility, flexibility, scalability and biocompatibility. Among the several potential applications, DNA origami has been proposed as a tool for drug delivery and as a contrast agent, since a conformational change upon specific target interaction may be used to release a drug or produce a physical signal, respectively. However, its conformation should be robust with respect to the properties of the medium in which either the recognition or the read-out take place, such as pressure, viscosity and any other unspecific interaction other than the desired target recognition. Here we report on the read-out robustness of a tetragonal DNA-origami/gold-nanoparticle hybrid structure able to change its configuration, which is transduced in a change of its plasmonic properties, upon interaction with a specific DNA target. We investigated its response when analyzed in three different media: aqueous solution, solid support and viscous gel. We show that, once a conformational variation is produced, it remains unaffected by the subsequent physical interactions with the environment.

Keywords

DNA origami plasmonic sensor molecular detection gold nanoparticle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

V. M. acknowledges financial support from MIUR (MIUR Giovani-Ambito “Salute dell’uomo”). Work at the Molecular Foundry, under the research project No. 3376, was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the Facility of Nanofabrication (FNF) of IOM for the support in sample preparation, Simone Dal Zilio and Silvio Greco for help in data analysis and stimulating discussions. We acknowledge Prof. Giuseppe Firrao for valuable comments and inspiring ideas, the NanoInnovation laboratory (Elettra Sincrotrone) for suggestion provided for AFM analysis and the BioLab (Elettra Sincrotrone) for the use of lab and instrumentation.

Supplementary material

12274_2019_2535_MOESM1_ESM.pdf (5 mb)
A DNA origami plasmonic sensor with environment-independent read-out

References

  1. [1]
    Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev. 2007, 107, 4797–4862.CrossRefGoogle Scholar
  2. [2]
    Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphardt, J. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 2005, 5, 2246–2252.CrossRefGoogle Scholar
  3. [3]
    Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science2003, 302, 419–422.CrossRefGoogle Scholar
  4. [4]
    Hill, R. T.; Mock, J. J.; Hucknall, A.; Wolter, S. D.; Jokerst, N. M.; Smith, D. R.; Chilkoti, A. Plasmon ruler with angstrom length resolution. ACS Nano2012, 6, 9237–9246.CrossRefGoogle Scholar
  5. [5]
    Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 2007, 7, 2101–2107.CrossRefGoogle Scholar
  6. [6]
    Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater. 2010, 9, 60–67.CrossRefGoogle Scholar
  7. [7]
    Taminiau, T. H.; Stefani, F. D.; Segerink, F. B.; Van Hulst, N. F. Optical antennas direct single-molecule emission. Nat Photonics2008, 2, 234- 237.CrossRefGoogle Scholar
  8. [8]
    Bek, A.; Jansen, R.; Ringler, M.; Mayilo, S.; Klar, T. A.; Feldmann, J. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 2008, 8, 485–490.CrossRefGoogle Scholar
  9. [9]
    Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc. 2010, 132, 3248–3249.CrossRefGoogle Scholar
  10. [10]
    Zhou, C.; Duan, X. Y.; Liu, N. A plasmonic nanorod that walks on DNA origami. Nat Commun. 2015, 6, 8102.CrossRefGoogle Scholar
  11. [11]
    Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature2012, 483, 311–314.CrossRefGoogle Scholar
  12. [12]
    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature2006, 440, 297–302.CrossRefGoogle Scholar
  13. [13]
    Zanacchi, F. C.; Manzo, C.; Alvarez, A. S.; Derr, N. D.; Garcia-Parajo, M. F.; Lakadamyali, M. A DNA origami platform for quantifying protein copy number in super-resolution. Nat Methods2017, 14, 789–792.CrossRefGoogle Scholar
  14. [14]
    Hudoba, M. W.; Luo, Y.; Zacharias, A.; Poirier, M. G.; Castro, C. E. Dynamic DNA origami device for measuring compressive depletion forces. ACS Nano2017, 11, 6566–6573.CrossRefGoogle Scholar
  15. [15]
    Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem Rev. 2017, 11 7, 12584–12640.Google Scholar
  16. [16]
    Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc. 2012, 134, 13396- 13403.CrossRefGoogle Scholar
  17. [17]
    Hemmig, E. A.; Fitzgerald, C.; Maffeo, C.; Hecker, L.; Ochmann, S. E.; Aksimentiev, A.; Tinnefeld, P.; Keyser, U. F. Optical voltage sensing using DNA origami. Nano Lett. 2018, 18, 1962–1971.CrossRefGoogle Scholar
  18. [18]
    Marini, M.; Piantanida, L.; Musetti, R.; Bek, A.; Dong, M. D.; Besenbacher, F.; Lazzarino, M.; Firrao, G. A revertible, autonomous, self-assembled DNA-origami nanoactuator. Nano Lett. 2011, 11, 5449- 5454.CrossRefGoogle Scholar
  19. [19]
    Torelli, E.; Marini, M.; Palmano, S.; Piantanida, L.; Polano, C.; Scarpellini, A.; Lazzarino, M.; Firrao, G. A DNA origami nanorobot controlled by nucleic acid hybridization. Small2014, 10, 2918–2926.CrossRefGoogle Scholar
  20. [20]
    Prinz, J.; Schreiber, B.; Olejko, L.; Oertel, J.; Rackwitz, J.; Keller, A.; Bald, I. DNA origami substrates for highly sensitive surface-enhanced Raman scattering. J Phys Chem Lett. 2013, 4, 4140–4145.CrossRefGoogle Scholar
  21. [21]
    Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science2012, 338, 506–510.CrossRefGoogle Scholar
  22. [22]
    Piantanida, L.; Naumenko, D.; Lazzarino, M. Highly efficient gold nanoparticle dimer formation via DNA hybridization. RSC Adv. 2014, 4, 15281–15287.CrossRefGoogle Scholar
  23. [23]
    Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005, 23, 741–745.CrossRefGoogle Scholar
  24. [24]
    Kuzyk, A.; Urban, M. J.; Idili, A.; Ricci, F.; Liu, N. Selective control of reconfigurable chiral plasmonic metamolecules. Sci Adv. 2017, 3, e1602803.CrossRefGoogle Scholar
  25. [25]
    Zhou, C.; Xin, L.; Duan, X. Y.; Urban, M. J.; Liu, N. Dynamic plasmonic system that responds to thermal and aptamer-target regulations. Nano Lett. 2018, 18, 7395–7399.CrossRefGoogle Scholar
  26. [26]
    Schreiber, R.; Luong, N.; Fan, Z. Y.; Kuzyk, A.; Nickels, P. C.; Zhang, T.; Smith, D. M.; Yurke, B.; Kuang, W.; Govorov, A. O. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun. 2013, 4, 2948.Google Scholar
  27. [27]
    Piantanida, L.; Naumenko, D.; Torelli, E.; Marini, M.; Bauer, D. M.; Fruk, L.; Firrao, G.; Lazzarino, M. Plasmon resonance tuning using DNA origami actuation. Chem Commun. 2015, 51, 4789–4792.CrossRefGoogle Scholar
  28. [28]
    Kim, D. N.; Kilchherr, F.; Dietz, H.; Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 2012, 40, 2862–2868.CrossRefGoogle Scholar
  29. [29]
    Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A primer to scaffolded DNA origami. Nat Methods2011, 8, 221–229.CrossRefGoogle Scholar
  30. [30]
    Masciotti, V.; Naumenko, D.; Lazzarino, M.; Piantanida, L. Tuning gold nanoparticles plasmonic properties by DNA nanotechnology. In DNA Nanotechnology: Methods and Protocols. Zuccheri, G., Ed.; Springer: New York, N Y, 2018; pp 279–297.CrossRefGoogle Scholar
  31. [31]
    Dubochet, J.; Adrian, M.; Chang, J. J.; Homo, J. C.; Lepault, J.; McDowall, A. W.; Schultz, P. Cryo-electron microscopy of vitrified specimens. Quart Rev Biophys. 1988, 21, 129–228.CrossRefGoogle Scholar
  32. [32]
    Glaeser, R. M. Retrospective: Radiation damage and its associated “information limitations”. J Struct Biol. 2008, 163, 271–276.CrossRefGoogle Scholar
  33. [33]
    Lei, D. S.; Marras, A. E.; Liu, J. F.; Huang, C. M.; Zhou, L. F.; Castro, C. E.; Su, H. J.; Ren, G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat Commun. 2018, 9, 592.Google Scholar
  34. [34]
    Zhang, L.; Lei, D. S.; Smith, J. M.; Zhang, M.; Tong, H. M.; Zhang, X.; Lu, Z. Y.; Liu, J. K.; Alivisatos, A. P.; Ren, G. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. Nat Commun. 2016, 7, 11083.Google Scholar
  35. [35]
    Amenitsch, H.; Rappolt, M.; Kriechbaum, M.; Mio, H.; Laggner, P.; Bernstorff, S. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J Synchrotron Radiat. 1998, 5, 506- 508.CrossRefGoogle Scholar
  36. [36]
    Bernstorff, S.; Amenitsch, H.; Laggner, P. High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA. J Synchrotron Radiat. 1998, 5, 1215–1221.CrossRefGoogle Scholar
  37. [37]
    Forget, A.; Pique, R. A.; Ahmadi, V.; Lüdeke, S.; Shastri, V. P. Mechanically tailored agarose hydrogels through molecular alloying with β-sheet polysaccharides. Macromol Rapid Commun. 2015, 36, 196–203.CrossRefGoogle Scholar
  38. [38]
    Rüther, A.; Forget, A.; Roy, A.; Carballo, C.; Mießmer, F.; Dukor, R. K.; Nafie, L. A.; Johannessen, C.; Shastri, V. P.; Lüdeke, S. Unravelling a direct role for polysaccharide β-strands in the higher order structure of physical hydrogels. Angew Chem., Int Ed. 2017, 56, 4603–4607.CrossRefGoogle Scholar
  39. [39]
    Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 1908, 330, 377–445.CrossRefGoogle Scholar
  40. [40]
    García De Abajo, F. J. Multiple scattering of radiation in clusters of dielectrics. Phys Rev B1999, 60, 6086–6102.CrossRefGoogle Scholar
  41. [41]
    Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García De Abajo, F. J. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008, 37, 1792–1805.CrossRefGoogle Scholar
  42. [42]
    Walsh, A. S.; Yin, H. F.; Erben, C. M.; Wood, M. J. A.; Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano2011, 5, 5427–5432.CrossRefGoogle Scholar
  43. [43]
    Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012, 7, 389–393.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Valentina Masciotti
    • 1
    • 2
    Email author
  • Luca Piantanida
    • 1
  • Denys Naumenko
    • 1
    • 3
  • Heinz Amenitsch
    • 4
  • Mattia Fanetti
    • 5
  • Matjaž Valant
    • 5
    • 6
  • Dongsheng Lei
    • 7
    • 8
  • Gang Ren
    • 7
  • Marco Lazzarino
    • 1
    Email author
  1. 1.CNR-IOM, AREA Science ParkBasovizza TriesteItaly
  2. 2.PhD Course in NanotechnologyUniversity of TriesteTriesteItaly
  3. 3.Institute for Physics of SemiconductorsNational Academy of Sciences of UkraineKyivUkraine
  4. 4.Institute of Inorganic ChemistryGraz University of TechnologyGrazAustria
  5. 5.Materials Research LaboratoryUniversity of Nova GoricaNova GoricaSlovenia
  6. 6.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  7. 7.The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  8. 8.School of Physical Science and Technology, Electron Microscopy Center of LZULanzhou UniversityLanzhouChina

Personalised recommendations