Nano Research

, Volume 12, Issue 11, pp 2889–2893 | Cite as

Real time imaging of two-dimensional iron oxide spherulite nanostructure formation

  • Wenjing Zheng
  • Matthew R. Hauwiller
  • Wen-I Liang
  • Colin Ophus
  • Peter Ercius
  • Emory M. Chan
  • Ying-Hao Chu
  • Mark Asta
  • Xiwen DuEmail author
  • A. Paul Alivisatos
  • Haimei ZhengEmail author
Research Article


The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view. Spherulite structures with radial fibrillar branches have been found in various solids; however, their growth mechanisms remain poorly understood. Here, we report real time imaging of the formation of two-dimensional (2D) iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy (TEM). By tracking the growth trajectories, we show the characteristics of the reaction front and growth kinetics. Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes (5.5–8.5 nm). The radius of a spherulite nanostructure increases linearly with time at the early stage, transitioning to nonlinear growth at the later stage. Furthermore, a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches. The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth. A growth model is further established, which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.


liquid cell transmission electron microscopy (TEM) in situ TEM iron oxide spherulite nanostructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 within the in-situ TEM (KC22ZH) program. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Gatan Inc. for the advanced K2 IS camera and Dr. Ming Pan and Dr. Cory Czarnik for their help with part of experimental set up in this work. W. J. Z. acknowledges the support from Tianjin University Graduate School International Academic Exchange Fund. M. R. H. was funded by KAUST project under H. M. Z. at UC Berkeley.

Supplementary material

12274_2019_2531_MOESM1_ESM.pdf (4.5 mb)
Real time imaging of two-dimensional iron oxide spherulite nanostructure formation
12274_2019_2531_MOESM2_ESM.avi (128.6 mb)
Supplementary material, approximately 128 MB.
12274_2019_2531_MOESM3_ESM.avi (46.2 mb)
Supplementary material, approximately 46.1 MB.
12274_2019_2531_MOESM4_ESM.avi (24.8 mb)
Supplementary material, approximately 24.8 MB.
12274_2019_2531_MOESM5_ESM.avi (4 mb)
Supplementary material, approximately 4.2 MB.
12274_2019_2531_MOESM6_ESM.avi (2.9 mb)
Supplementary material, approximately 2.85 MB.


  1. [1]
    Geveling, N. N.; Maslenkov, S. B. Solidification of eutectic Ni-Ni3Ti alloys. Met. Sci. Heat Treat. 1976, 18, 755–760.Google Scholar
  2. [2]
    Crist, B.; Schultz, J. M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016, 56, 1–63.Google Scholar
  3. [3]
    Kolosov, V. Y.; Shvamm, K. L.; Gainutdinov, R. V.; Tolstikhina, A. L. Combined TEM-AFM study of “transrotational” spherulites growing in thin amorphous films. Bull. Russ. Acad. Sci.: Phys. 2007, 71, 1442–1446.Google Scholar
  4. [4]
    Sasaki, N.; Murakami, Y.; Shindo, D.; Sugimoto, T. Computer simulations for the growth process of peanut-type hematite particles. J. Colloid Interface Sci. 1999, 213, 121–125.Google Scholar
  5. [5]
    Fowler, A. D.; Berger, B.; Shore, M.; Jones, M. I.; Ropchan, J. Supercooled rocks: Development and significance of varioles, spherulites, dendrites and spinifex in Archaean volcanic rocks, Abitibi Greenstone belt, Canada. Precambrian Res. 2002, 115, 311–328.Google Scholar
  6. [6]
    Davis, B. K.; McPhie, J. Spherulites, quench fractures and relict perlite in a late Devonian rhyolite dyke, Queensland, Australia. J. Volcanol. Geotherm. Res. 1996, 71, 1–11.Google Scholar
  7. [7]
    Hutter, J. L.; Bechhoefer, J. Three classes of morphology transitions in the solidification of a liquid crystal. Phys. Rev. Lett. 1997, 79, 4022–4025.Google Scholar
  8. [8]
    Hutter, J. L.; Bechhoefer, J. Morphology transitions in diffusion-and kinetics-limited solidification of a liquid crystal. Phys. Rev. E 1999, 59, 4342–4352.Google Scholar
  9. [9]
    Hutter, J. L.; Bechhoefer, J. Banded spherulitic growth in a liquid crystal. J. Cryst. Growth 2000, 217, 332–343.Google Scholar
  10. [10]
    Kim, Y. Y.; Ribeiro, L.; Maillot, F.; Ward, O.; Eichhorn, S. J.; Meldrum, F. C. Bio-inspired synthesis and mechanical properties of calcite-polymer particle composites. Adv. Mater. 2010, 22, 2082–2086.Google Scholar
  11. [11]
    Toda, A.; Okamura, M.; Taguchi, K.; Hikosaka, M.; Kajioka, H. Branching and higher order structure in banded polyethylene spherulites. Macromolecules 2008, 41, 2484–2493.Google Scholar
  12. [12]
    Maxfield, J.; Mandelkern, L. Crystallinity, supermolecular structure, and thermodynamic properties of linear polyethylene fractions. Macromolecules 1977, 10, 1141–1153.Google Scholar
  13. [13]
    Voigt-Martin, I. G.; Mandelkern, L. A quantitative electron microscopic study of the crystallite structure of molecular weight fractions of linear polyethylene. J. Polym. Sci. Ploym. Phys. Ed. 1984, 22, 1901–1917.Google Scholar
  14. [14]
    Magill, J. H. Review spherulites: A personal perspective. J. Mater. Sci. 2001, 36, 3143–3164.Google Scholar
  15. [15]
    Keith, H. D.; Padden, F. J. Jr. Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization. J. Appl. Phys. 1964, 35, 1286–1296.Google Scholar
  16. [16]
    Asta, M.; Hoyt, J. J.; Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 2002, 66, 100101(R).Google Scholar
  17. [17]
    Karma, A.; Rappel, W. J. Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 1996, 77, 4050–4053.Google Scholar
  18. [18]
    Karma, A.; Rappel, W. J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 1998, 57, 4323–4349.Google Scholar
  19. [19]
    Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 1980, 52, 1–28.Google Scholar
  20. [20]
    Morris, J. R. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 2002, 66, 144104.Google Scholar
  21. [21]
    Mullins, W. W.; Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 1964, 35, 444–451.Google Scholar
  22. [22]
    Mullins, W. W.; Sekerka, R. F. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 1963, 34, 323–329.Google Scholar
  23. [23]
    Plapp, M.; Karma, A. Multiscale random-walk algorithm for simulating interfacial pattern formation. Phys. Rev. Lett. 2000, 84, 1740–1743.Google Scholar
  24. [24]
    Plapp, M.; Karma, A. Multiscale finite-difference-diffusion-monte-carlo method for simulating dendritic solidification. J. Comput. Phys. 2000, 165, 592–619.Google Scholar
  25. [25]
    Provatas, N.; Goldenfeld, N.; Dantzig, J. Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 1998, 80, 3308–3311.Google Scholar
  26. [26]
    Sun, D. Y.; Asta, M.; Hoyt, J. J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys. Rev. B 2004, 69, 024108.Google Scholar
  27. [27]
    Sun, D. Y.; Mendelev, M. I.; Becker, C. A.; Kudin, K.; Haxhimali, T.; Asta, M.; Hoyt, J. J.; Karma, A.; Srolovitz, D. J. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B 2006, 73, 024116.Google Scholar
  28. [28]
    Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. B: Biol. Sci. 1952, 237, 37–72.Google Scholar
  29. [29]
    Sperling, L. H. Introduction to physical polymer science, 4th ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2006.Google Scholar
  30. [30]
    Magill, J. H.; Plazek, D. J. Physical properties of aromatic hydrocarbons. II. Solidification behavior of 1,3,5-tri-α-naphthylbenzene. J. Chem. Phys. 1967, 46, 3757–3769.Google Scholar
  31. [31]
    Muthukumar, M. Commentary on theories of polymer crystallization. Eur. Phys. J. E 2000, 3, 199–202.Google Scholar
  32. [32]
    Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J. A.; Douglas, J. F. Growth and form of spherulites. Phys. Rev. E 2005, 72, 011605.Google Scholar
  33. [33]
    Aaronson, H. I.; Spanos, G.; Masamura, R. A.; Vardiman, R. G.; Moon, D. W.; Menon, E. S. K.; Hall, M. G. Sympathetic nucleation: An overview. Mater. Sci. Eng. B 1995, 32, 107–123.Google Scholar
  34. [34]
    Ferrone, F. A.; Hofrichter, J.; Sunshine, H. R.; Eaton, W. A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys. J. 1980, 32, 361–380.Google Scholar
  35. [35]
    Ferrone, F. A.; Hofrichter, J.; Eaton, W. A. Kinetics of sickle hemoglobin polymerization: II. A double nucleation mechanism. J. Mol. Biol. 1985, 183, 611–631.Google Scholar
  36. [36]
    Samuel, R. E.; Salmon, E. D.; Briehl, R. W. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature 1990, 345, 833–835.Google Scholar
  37. [37]
    Galkin, O.; Vekilov, P. G. Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J. Mol. Biol. 2004, 336, 43–59.Google Scholar
  38. [38]
    Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.Google Scholar
  39. [39]
    Kim, B. J.; Tersoff, J.; Kodambaka, S.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 2008, 322, 1070–1073.Google Scholar
  40. [40]
    Harutyunyan, A. R.; Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Kuznetsov, O. A.; Hewaparakrama, K.; Kim, S. M.; Zakharov, D.; Stach, E. A.; Sumanasekera, G. U. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 2009, 326, 116–120.Google Scholar
  41. [41]
    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.Google Scholar
  42. [42]
    Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.Google Scholar
  43. [43]
    Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.Google Scholar
  44. [44]
    Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.Google Scholar
  45. [45]
    Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 2019, 5, eaaw5623.Google Scholar
  46. [46]
    Hauwiller, M. R.; Zhang, X. W.; Liang, W. I.; Chiu, C. H.; Zhang, Q.; Zheng, W. J.; Ophus, C.; Chan, E. M.; Czarnik, C.; Pan, M. et al. Dynamics of nanoscale dendrite formation in solution growth revealed through in situ liquid cell electron microscopy. Nano Lett. 2018, 18, 6427–6433.Google Scholar
  47. [47]
    Yang, J.; Zeng, Z. Y.; Kang, J.; Betzler, S.; Czarnik, C.; Zhang, X. W.; Ophus, C.; Yu, C.; Bustillo, K.; Pan, M.; et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 2019, 18, 970–976.Google Scholar
  48. [48]
    Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314.Google Scholar
  49. [49]
    Tronc, E.; Belleville, P.; Jolivet, J. P.; Livage, J. Transformation of ferric hydroxide into spinel by iron(II) adsorption. Langmuir 1992, 8, 313–319.Google Scholar
  50. [50]
    Benner, S. G.; Hansel, C. M.; Wielinga, B. W.; Barber, T. M.; Fendorf, S. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 2002, 36, 1705–1711.Google Scholar
  51. [51]
    Hansel, C. M.; Benner, S. G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R. K.; Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 2003, 67, 2977–2992.Google Scholar
  52. [52]
    Müller, C.; Aghamohammadi, M.; Himmelberger, S.; Sonar, P.; Garriga, M.; Salleo, A.; Campoy-Quiles, M. One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv. Funct. Mater. 2013, 23, 2368–2377.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenjing Zheng
    • 1
    • 2
  • Matthew R. Hauwiller
    • 2
    • 3
  • Wen-I Liang
    • 2
    • 4
  • Colin Ophus
    • 5
  • Peter Ercius
    • 5
  • Emory M. Chan
    • 5
  • Ying-Hao Chu
    • 4
  • Mark Asta
    • 2
    • 6
  • Xiwen Du
    • 1
    Email author
  • A. Paul Alivisatos
    • 2
    • 3
    • 7
  • Haimei Zheng
    • 2
    • 6
    Email author
  1. 1.Institute of New-Energy Materials, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of ChemistryUniversity of CaliforniaBerkeley, BerkeleyUSA
  4. 4.Department of Materials Science and Engineering“National Chiao Tung University”HsinchuChina
  5. 5.The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeley, BerkeleyUSA
  7. 7.Kavli Energy NanoScience InstituteUniversity of California-Berkeley and Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations