Advertisement

Nano Research

, Volume 12, Issue 11, pp 2881–2888 | Cite as

Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties

  • Shaohan Yang
  • Shuna Li
  • Lianghao Song
  • Yipin LvEmail author
  • Zhongyao Duan
  • Chunsheng Li
  • Raphael Francesco Praeg
  • Daowei GaoEmail author
  • Guozhu ChenEmail author
Research Article
  • 111 Downloads

Abstract

Structure-engineered platinum-based nanoframes (NFs) at the atomic level can effectively improve the catalytic performance for fuel cells and other heterogeneous catalytic fields. We report herein, a microwave-assisted wet-chemical method for the preparation of platinum-copper-cobalt NFs with tunable defect density and architecture, which exhibit enhanced activity and durability towards the electro-oxidation reactions of methanol (MOR) and formic acid (FAOR). By altering the reduction/capping agents and thus the nucleation/growth kinetics, trimetallic platinum-copper-cobalt hexapod NFs with different density high-index facets are achieved. Especially, the rough hexapod nanoframes (rh-NFs) exhibit excellent specific activities towards MOR and FAOR, 7.25 and 5.20 times higher than those of benchmark Pt/C, respectively, along with prolonged durability. The excellent activities of the rh-NFs are assigned to a synergistic effect, including high density of defects and high-index facets, suitable d-band center, and open-framework structure. This synergistic working mechanism opens up a new way for enhancing their electrocatalytic performances by increasing defect density and high-index facets in open-framework platinum-based NFs.

Keywords

nanoframes defect-density high-index facets electrocatalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21808079 and 21878121), Natural Science Foundation of Shandong Province (No. ZR2017BB029), China Postdoctoral Science Foundation (No. 2017M610405), International Postdoctoral Exchange Fellowship Program Between Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, OCPC and University of Jinan.

Supplementary material

12274_2019_2530_MOESM1_ESM.pdf (4.4 mb)
Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties

References

  1. [1]
    Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc.2011, 133, 4718–4721.Google Scholar
  2. [2]
    Gao, D. W.; Li, S. N.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res.2018, 11, 2612–2624.Google Scholar
  3. [3]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed.2014, 126, 12730–12735.Google Scholar
  4. [4]
    Liao, H. B.; Zhu, J. H.; Hou, Y. L. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale2014, 6, 1049–1055.Google Scholar
  5. [5]
    Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal.2015, 5, 1468–1474.Google Scholar
  6. [6]
    Koenigsmann, C.; Semple, D. B.; Sutter, E.; Tobierre, S. E.; Wong, S. S. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. ACS Appl. Mater. Interfaces2013, 5, 5518–5530.Google Scholar
  7. [7]
    Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G; Zhu X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun.2016, 7, 11850.Google Scholar
  8. [8]
    Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. High-index facets bounded platinum-lead concave nanocubes with enhanced electrocatalytic properties. Chem. Mater.2017, 29, 4557–4562.Google Scholar
  9. [9]
    Li, W. Q.; Hu, Z. Y.; Zhang, Z. W.; Wei, P.; Zhang, J. N.; Pu, Z. H.; Zhu, J. W.; He, D. P.; Mu, S. C.; van Tendeloo, G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J. Catal.2019, 375, 164–170.Google Scholar
  10. [10]
    Du, H. Y.; Luo, S. P.; Wang, K.; Tang, M.; Sriphathoorat, R.; Jin, Y. S.; Shen, P. K. High-quality and deeply excavated Pt3Co nanocubes as efficient catalysts for liquid fuel electrooxidation. Chem. Mater.2017, 29, 9613–9617.Google Scholar
  11. [11]
    Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc.2018, 140, 1142–1147.Google Scholar
  12. [12]
    Ding, J. B.; Bu, L. Z.; Guo, S. J.; Zhao, Z. P.; Zhu, E. B.; Huang, Y.; Huang, X. Q. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett.2016, 16, 2762–2767.Google Scholar
  13. [13]
    Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano2017, 11, 11946–11953.Google Scholar
  14. [14]
    Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal.2018, 8, 7578–7584.Google Scholar
  15. [15]
    Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res.2018, 11, 4786–4795.Google Scholar
  16. [16]
    Ma, Y. X.; Yin, L. S.; Yang, T.; Huang, Q. L.; He, M. S.; Zhao, H.; Zhang, D. E.; Wang, M. Y.; Tong, Z. W. One-pot synthesis of concave platinum-cobalt nanocrystals and their superior catalytic performances for methanol electrochemical oxidation and oxygen electrochemical reduction. ACS Appl. Mater. Interfaces2017, 9, 36164–36172.Google Scholar
  17. [17]
    Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Chen, S. L.; Li, Y. J.; Li, C. J.; Yang, Y.; Wu, D.; Xu, N. Y.; Xing, Y. et al. Surface and near-surface engineering of PtCo nanowires at atomic scale for enhanced electrochemical sensing and catalysis. Chem. Mater.2018, 30, 6660–6667.Google Scholar
  18. [18]
    Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett.2016, 16, 5037–5043.Google Scholar
  19. [19]
    Zhang, T.; Bai, Y.; Sun, Y. Q.; Hang, L. F.; Li, X. Y.; Liu, D. L.; Lyu, X.; Li, C. C.; Cai, W. P.; Li, Y. Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J. Mater. Chem. A2018, 6, 13735–13742.Google Scholar
  20. [20]
    Bai, S. X.; Bu, L. Z.; Shao, Q.; Zhu, X.; Huang, X. Q. Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions. J. Am. Chem. Soc.2018, 140, 8384–8387.Google Scholar
  21. [21]
    Luo, S. P.; Tang, M.; Shen, P. K.; Ye, S. Y. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv. Mater.2017, 29, DOI:  https://doi.org/10.1002/adma.201601687.
  22. [22]
    Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater.2018, 30, 1804074.Google Scholar
  23. [23]
    Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater.2018, 30, 1705515.Google Scholar
  24. [24]
    Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F. et al. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small2016, 12, 524–533.Google Scholar
  25. [25]
    Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Three-dimensional hierarchical Pt-Cu superstructures. Nano Res.2015, 8, 832–838.Google Scholar
  26. [26]
    Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater.2018, 28, 1704774.Google Scholar
  27. [27]
    Chen, Q. L.; Yang, Y. N.; Cao, Z. M.; Kuang, Q.; Du G. F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem, Int. Ed.2016, 55, 9021–9025.Google Scholar
  28. [28]
    Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res.2015, 8, 140–155.Google Scholar
  29. [29]
    Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater.2018, 30, 1801741.Google Scholar
  30. [30]
    Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L. et al. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater.2015, 27, 6402–6410.Google Scholar
  31. [31]
    Becknell, N.; Zheng, C.; Chen, C.; Yu, Y.; Yang, P. D. Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. Surf. Sci.2016, 648, 328–332.Google Scholar
  32. [32]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1344.Google Scholar
  33. [33]
    Wang, C. Y.; Zhang, L. H.; Yang, H. Z.; Pan, J. F.; Liu, J. Y.; Dotse, C.; Luan, Y. L.; Gao, R.; Lin, C. K.; Zhang, J. et al. High-indexed Pt3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching. Nano Lett.2017, 17, 2204–2210.Google Scholar
  34. [34]
    Chen, S. P.; Niu, Z. Q.; Xie, C. L.; Gao, M. Y.; Lai, M. L.; Li, M. F.; Yang, P. D. Effects of catalyst processing on the activity and stability of Pt-Ni nanoframe electrocatalysts. ACS Nano2018, 12, 8697–8705.Google Scholar
  35. [35]
    Shang, C. S.; Guo, Y. X.; Wang, E. K. Ultrathin nanodendrite surrounded PtRuNi nanoframes as efficient catalysts for methanol electrooxidation. J. Mater. Chem. A2019, 7, 2547–2552.Google Scholar
  36. [36]
    Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Size-controlled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes. Angew. Chem., Int. Ed.2015, 54, 108–113.Google Scholar
  37. [37]
    Hong, X.; Wang, D. S.; Cai, S. F.; Rong, H. P.; Li, Y. D. Single-crystalline octahedral Au-Ag nanoframes. J. Am. Chem. Soc.2012, 134, 18165–18168.Google Scholar
  38. [38]
    Huang, L.; Jiang, Z.; Gong, W. H.; Wang, Z.; Shen, P. K. Two-step etching fabrication of tunable ternary rhombic dodecahedral nanoframes for enhanced oxygen reduction electrocatalysis. J. Power Sources2018, 406, 42–49.Google Scholar
  39. [39]
    Lyu, L. M.; Kao, Y. C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y. C.; Kuo, C. H. Spiny rhombic dodecahedral CuPt nanoframes with enhanced catalytic performance synthesized from Cu nanocube templates. Chem. Mater.2017, 29, 5681–5692.Google Scholar
  40. [40]
    Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun.2015, 51, 9722–9725.Google Scholar
  41. [41]
    Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale2016, 8, 16379–16386.Google Scholar
  42. [42]
    Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun.2018, 9, 3702.Google Scholar
  43. [43]
    Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small2017, 13, 1702617.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of JinanJinanChina
  2. 2.Institute for Solar FuelsHelmholtz Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  3. 3.Young Investigator Group Operando Characterization of Solar Fuel MaterialsHelmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany

Personalised recommendations