Advertisement

Nano Research

, Volume 12, Issue 11, pp 2872–2880 | Cite as

Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction

  • Xiaojun Zhao
  • Dan Luo
  • Yan Wang
  • Zhi-Hong LiuEmail author
Research Article
  • 104 Downloads

Abstract

Rational synthesis of a hierarchical porous architecture with highly active and consecutive conductive network is very critical to achieve the high-performance of nanomaterials in electrochemical energy conversion and storage. We propose here a hierarchical micro-/nanostructured hybrids constructed by the dual carbon shell nanowire host containing CoP nanocrystals of several nanometers, which generates Co-based metal-organic framework on graphene oxide nanosheets in situ and followed a direct phosphorization (CoP@NC/rGO). The dual carbon shell, consisting of Co-based metal-organic framework derived porous doped carbon (NC) and reduced graphene oxide (rGO), can not only impedes CoP nanocrystals from coalescing, and renders highly exposed the electrochemically accessible active sites, but also provides the multidimensional pathways for rapid electron and ion transportation. More importantly, the covered dual carbon shell on CoP nanocrystals plays a role as a protective layer to impede the nanocrystals’ corrosion. By virtue of compositional and structural advantages, the micro-/nanostructured CoP@NC/rGO hybrids manifest outstanding energy storage properties when evaluated as anodes for lithium/sodium ion batteries. Remarkably, it also reveals highly efficient electrocatalytic performance for hydrogen evolution reaction in acid media with low Tafel slope, overpotential and robust durability.

Keywords

micro-/nanostructured metal-organic framework CoP@NC/rGO lithium/sodium ion batteries hydrogen evolution reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21573142 and 21903051), the China Postdoctoral Science Foundation (No. 2018M643569), the Natural Science Foundation of Shaanxi Province (No. 2019JQ-671), and the Fundamental Research Funds for the Central Universities (No. GK201903042).

Supplementary material

12274_2019_2529_MOESM1_ESM.pdf (4.7 mb)
Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction

References

  1. [1]
    Yun, Q. B.; Lu, Q. P.; Zhang, X.; Tan, C. L.; Zhang, H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem., Int. Ed.2018, 57, 626–646.Google Scholar
  2. [2]
    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev.2015, 44, 5148–5180.Google Scholar
  3. [3]
    Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater.2019, 9, 1802553.Google Scholar
  4. [4]
    Chen, L.; Jiang, H.; Jiang, H. B.; Zhang, H. X.; Guo, S. J.; Hu, Y. J.; Li, C. Z. Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater.2017, 7, 1602782.Google Scholar
  5. [5]
    Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B. Environ.2019, 256, 117893.Google Scholar
  6. [6]
    Zhao, X. J.; Wang, G.; Liu, X. J.; Zheng, X. L.; Wang, H. Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res.2018, 11, 3603–3618.Google Scholar
  7. [7]
    Li, J. J.; Shi, L.; Gao, J. Y.; Zhang, G. Q. General one-pot synthesis of transition-metal phosphide/nitrogen-doped carbon hybrid nanosheets as ultrastable anodes for sodium-ion batteries. Chem. -Eur. J.2018, 24, 1253–1258.Google Scholar
  8. [8]
    Hua, Y. P.; Xu, Q. C.; Hu, Y. J.; Jiang, H.; Li, C. Z. Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting. J. Energy Chem.2019, 37, 1–6.Google Scholar
  9. [9]
    Yu, F.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun.2018, 9, 2551.Google Scholar
  10. [10]
    Lei, C. J.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X. D.; Chen, M. W.; Yang, B.; Lei, L. C. et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci.2019, 12, 149–156.Google Scholar
  11. [11]
    Xu, H.; Wei, J. J.; Zhang, K.; Shiraishi, Y.; Du, Y. K. Hierarchical NiMo phosphide nanosheets strongly anchored on carbon nanotubes as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces2018, 10, 29647–29655.Google Scholar
  12. [12]
    Zhang, Y. J.; Wang, G. Y.; Wang, L.; Tang, L.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. H. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries. Nano Lett.2019, 19, 2575–2582.Google Scholar
  13. [13]
    Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater.2018, 30, 1800140.Google Scholar
  14. [14]
    Guan, C.; Xiao, W.; Wu, H. J.; Liu, X. M.; Zang, W. J.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy2018, 48, 73–80.Google Scholar
  15. [15]
    Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater.2017, 29, 1602441.Google Scholar
  16. [16]
    Gao, X.; Wang, B. Y.; Zhang, Y.; Liu, H.; Liu, H. K.; Wu, H.; Dou, S. X. Graphene-scroll-sheathe. α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater.2019, 16, 46–55.Google Scholar
  17. [17]
    Liu, X. B.; Li, W. X.; Zhao, X. D.; Liu, Y. C.; Nan, C. W.; Fan, L. Z. Two birds with one stone: Metal-organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater.2019, 29, 1901510.Google Scholar
  18. [18]
    Yoon, T.; Bok, T.; Kim, C.; Na, Y.; Park, S.; Kim, K. S. Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode. ACS Nano2017, 11, 4808–4815.Google Scholar
  19. [19]
    Chen, K.; Sun, Z. H.; Fang, R. P.; Shi, Y.; Cheng, H. M.; Li, F. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater.2018, 28, 1707592.Google Scholar
  20. [20]
    Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano2017, 11, 3705–3715.Google Scholar
  21. [21]
    Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano2016, 10, 377–386.Google Scholar
  22. [22]
    Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small2015, 11, 2511–2517.Google Scholar
  23. [23]
    Liang, D.; Jiang, H.; Xu, Q. C.; Luo, J. Q.; Hu, Y. J.; Li, C. Z. Modulating the Volmer step by MOF derivatives assembled with heterogeneous Ni2P-CoP nanocrystals in alkaline hydrogen evolution reaction. J. Electrochem. Soc.2018, 165, F1286–F1291.Google Scholar
  24. [24]
    Ge, X. L.; Li, Z. Q.; Yin, L. W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy2017, 32, 117–124.Google Scholar
  25. [25]
    Dai, R. L.; Sun, W. W.; Lv, L. P.; Wu, M. H.; Liu, H.; Wang, G. X.; Wang, Y. Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small2017, 13, 1700521.Google Scholar
  26. [26]
    Ma, J. W.; Wang, M.; Lei, G. Y.; Zhang, G. L.; Zhang, F. B.; Peng, W. C.; Fan, X. B.; Li, Y. Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small2018, 14, 1702895.Google Scholar
  27. [27]
    Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater.2018, 8, 1701416.Google Scholar
  28. [28]
    Ye, L.; Wen, Z. H. Self-supported three-dimensional Cu/Cu2O-CuO/rGO nanowire array electrodes for an efficient hydrogen evolution reaction. Chem. Commun.2018, 54, 6388–6391.Google Scholar
  29. [29]
    Song, F. Z.; Zhu, Q. L.; Yang, X.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater.2018, 8, 1701416.Google Scholar
  30. [30]
    Kim, S. H.; Babu, R.; Kim, D. W.; Lee, W.; Park, D. W. Cycloaddition of CO2 and propylene oxide by using M(HBTC)(4, 4′-bipy)-3DMF (M = Ni, Co, Zn) metal-organic frameworks. Chin. J. Catal.2018, 39, 1311–1319.Google Scholar
  31. [31]
    Gao, C. Y.; Liu, S. X.; Xie, L. H.; Ren, Y. H.; Cao, J. F.; Sun, C. Y. Design and construction of a microporous metal-organic framework based on the pillared-layer motif. CrystEngComm2007, 9, 545–547.Google Scholar
  32. [32]
    Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater.2018, 30, 1800140.Google Scholar
  33. [33]
    Chen, Z. L.; Wu, R. B.; Liu, M.; Wang, H.; Xu, H. B.; Guo, Y. H.; Song, Y.; Fang, F.; Yu, X. B.; Sun, D. L. General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater.2017, 27, 1702046.Google Scholar
  34. [34]
    Ji, D. H.; Wan, Y. Z.; Yang, Z. W.; Li, C. Z.; Xiong, G. Y.; Li, L. L.; Han, M.; Guo, R. S.; Luo, H. L. Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: A novel nanocomposite for lithium-ion batteries. Electrochim. Acta2016, 192, 22–29.Google Scholar
  35. [35]
    Singh, S. K.; Kashyap, V.; Manna, N.; Bhange, S. N.; Soni, R.; Boukherroub, R.; Szunerits, S.; Kurungot, S. Efficient and durable oxygen reduction electrocatalyst based on CoMn alloy oxide nanoparticles supported over n-doped porous graphene. ACS Catal.2017, 7, 6700–6710.Google Scholar
  36. [36]
    Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed.2014, 53, 4372–4376.Google Scholar
  37. [37]
    Yu, C.; Liu, Z. Q.; Meng, X. T.; Lu, B.; Cui, D.; Qiu, J. S. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale2016, 8, 17458–17464.Google Scholar
  38. [38]
    Zhu, K. J.; Liu, J.; Li, S. T.; Liu, L. L.; Yang, L. Y.; Liu, S. L.; Wang, H.; Xie, T. Ultrafine cobalt phosphide nanoparticles embedded in nitrogen-doped carbon matrix as a superior anode material for lithium ion batteries. Adv. Mater. Interfaces2017, 4, 1700377.Google Scholar
  39. [39]
    Yang, D.; Zhu, J. X.; Rui, X. H.; Tan, H. T.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. Y. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces2013, 5, 1093–1099.Google Scholar
  40. [40]
    López, M. C.; Ortiz, G. F.; Tirado, J. L. A functionalized Co2P negative electrode for batteries demanding high Li-potential reaction. J. Electrochem. Soc.2012, 159, A1253–A1261.Google Scholar
  41. [41]
    Zhang, Z. S.; Yang, J.; Nuli, Y. N.; Wang, B. F.; Xu, J. Q. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics2005, 176, 693–697.Google Scholar
  42. [42]
    Zhao, X. J.; Jia, Y. H.; Liu, Z. H. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J. Colloid Interface Sci.2019, 536, 463–473.Google Scholar
  43. [43]
    Bai, J.; Xi, B. J.; Mao, H. Z.; Lin, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater.2018, 30, 1802310.Google Scholar
  44. [44]
    Liu, Z. L.; Yang, S. J.; Sun, B. X.; Chang, X. H.; Zheng, J.; Li, X. G. A peapodlike CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem., Int. Ed.2018, 57, 10187–10191.Google Scholar
  45. [45]
    Xu, X. J.; Liu, J.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Self-supported CoP nanorod arrays grafted on stainless steel as an advanced integrated anode for stable and long-life lithium-ion batteries. Chem. -Eur. J.2017, 23, 5198–5204.Google Scholar
  46. [46]
    Guo, G. L.; Guo, Y. Y.; Tan, H. T.; Yu, H.; Chen, W. H.; Fong, E.; Yan, Q. Y. From fibrous elastin proteins to one-dimensional transition metal phosphides and their applications. J. Mater. Chem. A2016, 4, 10893–10899.Google Scholar
  47. [47]
    Sun, L.; Zhang, Y.; Zhang, D. Y.; Liu, J. G.; Zhang, Y. H. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res.2018, 11, 2733–2745.Google Scholar
  48. [48]
    Lin, J.; Xu, J. J.; Zhao, W.; Dong, W. J.; Li, R. Z.; Zhang, Z. C.; Huang, F. Q. In situ synthesis of MoC1−x nanodot@Carbon hybrids for capacitive lithium-ion storage. ACS Appl. Mater. Interfaces2019, 11, 19977–19985.Google Scholar
  49. [49]
    Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun.2015, 6, 6929.Google Scholar
  50. [50]
    Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu, W. J.; Tu, J. P.; Zhang, W. K. et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano2013, 7, 7083–7092.Google Scholar
  51. [51]
    Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy2017, 32, 494–502.Google Scholar
  52. [52]
    Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources2015, 294, 627–632.Google Scholar
  53. [53]
    Li, Z. Q.; Yin, L. W. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A2015, 3, 21569–21577.Google Scholar
  54. [54]
    Zhang, Y. X.; Sun, L.; Bai, L. Q.; Si, H. C.; Zhang, Y.; Zhang, Y. H. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res.2019, 12, 607–618.Google Scholar
  55. [55]
    Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. Design of active and stable Co-Mo-S, chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater.2016, 15, 197–203.Google Scholar
  56. [56]
    Grosvenor, A. P.; Wik, S. D.; Cavell, R. G.; Mar, A. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy. Inorg. Chem.2005, 44, 8988–8998.Google Scholar
  57. [57]
    Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed.2019, 58, 4679–4684.Google Scholar
  58. [58]
    Wu, C.; Yang, Y. J.; Dong, D.; Zhang, Y. H.; Li, J. H. In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small2017, 13, 1602873.Google Scholar
  59. [59]
    Zhang, H. X.; Zhang, J. H.; Li, Y. H.; Jiang, H. B.; Jiang, H.; Li, C. Z. Continuous oxygen vacancy engineering of the Co3O4 layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A2019, 7, 13506–13510.Google Scholar
  60. [60]
    McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc.2015, 137, 4347–4357.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anChina

Personalised recommendations