Advertisement

Nano Research

, Volume 12, Issue 11, pp 2858–2865 | Cite as

Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect

  • Wancai Li
  • Chen Fang
  • Haizhen Wang
  • Shuai Wang
  • Junze Li
  • Jiaqi Ma
  • Jun Wang
  • Hongmei LuoEmail author
  • Dehui LiEmail author
Research Article

Abstract

Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical, electronic and optoelectronic properties of the materials, especially low-dimensional materials. Two-dimensional (2D) organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field; nevertheless, studies on this remain elusive. Here we report on how the surface depletion field affects the structural phase transition, quantum confinement and Stark effect in 2D (BA)2PbI4 perovskite microplates by the thickness-, temperature- and power-dependent photoluminescence (PL) spectroscopy. Power dependent PL studies suggest that high-temperature phase (HTP) and low-temperature phase (LTP) can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates. With the decrease of the microplate thickness, the structural phase transition temperature first gradually decreases and then increases below 25 nm, in striking contrast to the conventional size dependent structural phase transition. Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase, the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs. This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes. Along with the thickness dependent phase transition, the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.

Keywords

two-dimensional (2D) perovskite thickness surface depletion field structural phase transition quantum confinement Stark effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

D. H. L. acknowledges support from the National Natural Science Foundation of China (No. 61674060), Innovation Fund of WNLO and the Fundamental Research Funds for the Central Universities, HUST (Nos. 2017KFYXJJ030, 2017KFXKJC003, 2017KFXKJC002, and 2018KFYXKJC016); H. M. L. is grateful for support from New Mexico EPSCoR with NSF-1301346. We thank Testing Center of Huazhong University of Science and Technology for the support in inductively coupled plasma etching.

Supplementary material

12274_2019_2524_MOESM1_ESM.pdf (3.1 mb)
Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect

References

  1. [1]
    Leng, K.; Abdelwahab, I.; Verzhbitskiy, I.; Telychko, M.; Chu, L. Q.; Fu, W.; Chi, X.; Guo, N.; Chen, Z. H.; Chen, Z. X. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 2018, 17, 908–914.Google Scholar
  2. [2]
    Gerosa, M.; Gygi, F.; Govoni, M.; Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater.2018, 17, 1122–1127.Google Scholar
  3. [3]
    Long, G. K.; Zhou, Y. C.; Zhang, M. T.; Sabatini, R.; Rasmita, A.; Huang, L.; Lakhwani, G.; Gao, W. B. Theoretical prediction of chiral 3D hybrid organic—inorganic perovskites. Adv. Mater.2019, 31, 1807628.Google Scholar
  4. [4]
    Chen, Y. N.; Sun, Y.; Peng, J. J.; Tang, J. H.; Zheng, K. B.; Liang, Z. Q. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487.Google Scholar
  5. [5]
    Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small2018, 14, 1800682.Google Scholar
  6. [6]
    Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Huang, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.Google Scholar
  7. [7]
    Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys.2016, 12, 139–143.Google Scholar
  8. [8]
    Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.Google Scholar
  9. [9]
    Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270–276.Google Scholar
  10. [10]
    Wang, Z. Y.; Sun, Y. Y.; Abdelwahab, I.; Cao, L.; Yu, W.; Ju, H. X.; Zhu, J. F.; Fu, W.; Chu, L. Q.; Xu, H. et al. Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano2018, 18, 1936–0851.Google Scholar
  11. [11]
    Chen, L.; Liu, J.; Jiang, C.; Zhao, K. P.; Chen, H. Y.; Shi, X.; Chen, L. D.; Sun, C. H.; Zhang, S. B.; Wang, Y. et al. Nanoscale behavior and manipulation of the phase transition in single-crystal Cu2Se. Adv. Mater. 2019, 31, 1804919.Google Scholar
  12. [12]
    Kang, Y. M.; Najmaei, S.; Liu, Z.; Bao, Y. J.; Wang, Y. M.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 2014, 26, 6467–6471.Google Scholar
  13. [13]
    Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res.2014, 7, 1749–1758.Google Scholar
  14. [14]
    Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys.2015, 11, 582–587.Google Scholar
  15. [15]
    Li, L.; Li, J. Z.; Lan, S. G.; Lin, G. M.; Wang, J.; Wang, H. Z.; Xuan, Y. N.; Luo, H. M.; Li, D. H. Two-step growth of 2D organic-inorganic perovskite microplates and arrays for functional optoelectronics. J. Phys. Chem. Lett.2018, 9, 4532–4538.Google Scholar
  16. [16]
    Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater.2016, 28, 2852–2867.Google Scholar
  17. [17]
    Wang, J.; Li, J. Z.; Tan, Q. H.; Li, L.; Zhang, J. B.; Zang, J. F.; Tan, P. H.; Zhang, J.; Li, D. H. Controllable synthesis of two-dimensional ruddlesden-popper-type perovskite heterostructures. J. Phys. Chem. Lett.2017, 8, 6211–6219.Google Scholar
  18. [18]
    Yan, F.; Xing, J.; Xing, G. C.; Quan, L.; Tan, S. T.; Zhao, J. X.; Su, R.; Zhang, L. L.; Chen, S.; Zhao, Y. W. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett.2018, 18, 3157–3164.Google Scholar
  19. [19]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater.2016, 26, 2435–2445.Google Scholar
  20. [20]
    Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q,; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature2018, 562, 245–248.Google Scholar
  21. [21]
    Wang, J.; Su, R.; Xing, J.; Bao, D.; Diederichs, C.; Liu, S.; Liew, T. C. H.; Chen, Z. H.; Xiong, Q. H. Room temperature coherently coupled exciton—polaritons in two-dimensional organic—inorganic perovskite. ACS nano2018, 12, 8382–8389.Google Scholar
  22. [22]
    Fang, Y. J.; Dong, Q. F.; Shao, Y. H.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics2015, 9, 679–686.Google Scholar
  23. [23]
    Di, J.; Xiong, J.; Li, H. M.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater.2018, 30, 1704548.Google Scholar
  24. [24]
    Zhu, C.; Chen, Y.; Liu, F. C.; Zheng, S. J.; Li, X. B.; Chaturvedi, A.; Zhou, J. D.; Fu, Q. D.; He, Y. M.; Zeng, Q. S. et al. Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano2018, 12, 11203–11210.Google Scholar
  25. [25]
    Long, G. K.; Jiang, C. Y.; Sabatini, R.; Yang, Z. Y.; Wei, M. Y.; Quan, L. N.; Liang, Q. M.; Rasmita, A.; Askerka, M.; Walters, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics2018, 12, 528–533.Google Scholar
  26. [26]
    Li, D. H.; Zhang, J.; Xiong, Q. H. Surface depletion induced quantum confinement in CdS nanobelts. ACS Nano2012, 6, 5283–5290.Google Scholar
  27. [27]
    Billing, D. G.; Lemmerer, A. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr., Sect. B: Struct. Sci.2007, 63, 735–747.Google Scholar
  28. [28]
    Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res.2017, 10, 1107–1114.Google Scholar
  29. [29]
    Li, J. Z.; Wang, J.; Zhang, Y. J.; Wang, H. Z.; Lin, G. M.; Xiong, X.; Zhou, W. H; Luo, H. M.; Li, D. H. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater.2018, 5, 021001.Google Scholar
  30. [30]
    Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B2015, 414.Google Scholar
  31. [31]
    Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc.2015, 137, 2089–2096.Google Scholar
  32. [32]
    Thirumal, K.; Chong, W. K.; Xie, W.; Ganguly, R.; Muduli, S. K.; Sherburne, M.; Asta, M.; Mhaisalkar, S.; Sum, T. C.; Soo, H. S. et al. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton—phonon coupling to the organic framework. Chem. Mater.2017, 29, 3947–3953.Google Scholar
  33. [33]
    Li, J. Z.; Wang, J.; Ma, J. Q.; Shen, H. Z.; Li, L.; Duan, X. F.; Li, D. H. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun.2019, 10, 806.Google Scholar
  34. [34]
    Li, D. H.; Zhang, J.; Zhang, Q.; Xiong, Q. H. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz–Keldysh, and Stark effects. Nano Lett.2012, 12, 2993–2999.Google Scholar
  35. [35]
    Gauthron, K.; Lauret, J. S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S. J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express2010, 18, 5912–5919.Google Scholar
  36. [36]
    Chen, Z. Z.; Wang, Y. P.; Sun, X.; Xiang, Y.; Hu, Y.; Jiang, J.; Feng, J.; Sun, Y. Y.; Wang, X.; Wang, G. C. et al. Remote phononic effects in epitaxial Ruddlesden-Popper halide perovskites. J. Phys. Chem. Lett.2018, 9, 6676–6682.Google Scholar
  37. [37]
    Gan, L.; Li, J.; Fang, Z. S.; He, H. P.; Ye, Z. Z. Effects of organic cation length on exciton recombination in two-dimensional layered lead iodide hybrid perovskite crystals. J. Phys. Chem. Lett.2017, 8, 5177–5183.Google Scholar
  38. [38]
    Blancon, J. C.; Stier, A. V.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Traoré, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G. T. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun.2018, 9, 2254.Google Scholar
  39. [39]
    Ni, L. M.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A.; Rao, A. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano2017, 11, 10834–10843.Google Scholar
  40. [40]
    Zhang, Q.; Chu, L. Q.; Zhou, F.; Ji, W.; Eda, G. Excitonic properties of chemically synthesized 2D organic-inorganic hybrid perovskite nanosheets. Adv. Mater.2018, 30, 1704055.Google Scholar
  41. [41]
    Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics2014, 8, 737–743.Google Scholar
  42. [42]
    Li, D. H.; Liu, Y.; de la Mata, M.; Magen, C.; Arbiol, J.; Feng, Y. P.; Xiong, Q. H. Strain-induced spatially indirect exciton recombination in zinc-blende/wurtzite CdS heterostructures. Nano Res.2015, 8, 3035–3044.Google Scholar
  43. [43]
    Walters, G.; Wei, M.; Voznyy, O.; Quintero-Bermudez, R.; Kiani, A.; Smilgies, D. M.; Munir, R.; Amassian, A.; Hoogland, S.; Sargent, E. The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles. Nat. Commun.2018, 9, 4214.Google Scholar
  44. [44]
    Zhao, F. H.; Gao, X.; Fang, X.; Glinka, Y. D.; Feng, X. Y.; He, Z. B.; Wei, Z. P.; Chen, R. Interfacial-field-induced increase of the structural phase transition temperature in organic-inorganic perovskite crystals coated with ZnO nanoshell. Adv. Mater. Interfaces2018, 5, 1800301.Google Scholar
  45. [45]
    Roch, J. G.; Leisgang, N.; Froehlicher, G.; Makk, P.; Watanabe, K.; Taniguchi, T.; Schönenberger, C.; Warburton, R. J. Quantum-confined stark effect in a MoS2 monolayer van der waals heterostructure. Nano Lett.2018, 18, 1070–1074.Google Scholar
  46. [46]
    Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Garcia Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett.2015, 15, 6521–6527.Google Scholar
  47. [47]
    Hapuarachchi, H.; Gunapala, S. D.; Bao, Q. L.; Stockman, M. I.; Premaratne, M. Exciton behavior under the influence of metal nanoparticle near fields: Significance of nonlocal effects. Phys. Rev. B2018, 98, 115430.Google Scholar
  48. [48]
    Tu, Q.; Spanopoulos, I.; Hao, S. Q.; Wolverton, C.; Kanatzidis, M. G.; Shekhawat, G. S.; Dravid, V. P. Probing strain-induced band gap modulation in 2D hybrid organic—inorganic perovskites. ACS Energy Lett.2019, 4, 796–802.Google Scholar
  49. [49]
    Kepenekian, M.; Traore, B.; Blancon, J. C.; Pedesseau, L.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J.; Mohite, A. D. et al. Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett.2018, 18, 5603–5609.Google Scholar
  50. [50]
    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal—semiconductor junctions. Nature2018, 557, 696–700.Google Scholar
  51. [51]
    Zhang, K. Q.; Liu, X. Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature2004, 429, 739–743.Google Scholar
  52. [52]
    Jin, F.; Ji, J. T.; Xie, C.; Wang, Y. M.; He, S. N.; Zhang, L.; Yang, Z. R.; Yan, F.; Zhang, Q. M. Characterization of structural transitions and lattice dynamics of hybrid organic—inorganic perovskite CH3NH3PbI3. Chin. Phys. B.2019, 28, 076102.Google Scholar
  53. [53]
    Zeches, R. J.; Rossell, M. D.; Zhang, J. X.; Hatt, A. J.; He, Q.; Yang, C. H.; Kumar, A.; Wang, C. H.; Melville, A.; Adamo, C. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science2009, 326, 977–980.Google Scholar
  54. [54]
    Wehrenfennig, C.; Liu, M. Z.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2014, 2, 081513.Google Scholar
  55. [55]
    Hatt, A. J.; Spaldin, N. A.; Ederer, C. Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B2010, 81, 054109.Google Scholar
  56. [56]
    You, Y. M.; Liao, W. Q.; Zhao, D. W.; Ye, H. Y.; Zhang, Y.; Zhou, Q. H.; Niu, X. H.; Wang, J. L.; Li, P. F.; Fu, D. W. et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science2017, 357, 306–309.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wancai Li
    • 1
  • Chen Fang
    • 1
  • Haizhen Wang
    • 2
  • Shuai Wang
    • 1
  • Junze Li
    • 1
  • Jiaqi Ma
    • 1
  • Jun Wang
    • 1
  • Hongmei Luo
    • 2
    Email author
  • Dehui Li
    • 1
    Email author
  1. 1.School of Optical and Electronic Information and Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Chemical and Materials EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations