Advertisement

Nano Research

, Volume 12, Issue 11, pp 2842–2848 | Cite as

Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires

  • Shiyao Wu
  • Kai Peng
  • Sergio Battiato
  • Valentina Zannier
  • Andrea Bertoni
  • Guido Goldoni
  • Xin Xie
  • Jingnan Yang
  • Shan Xiao
  • Chenjiang Qian
  • Feilong Song
  • Sibai Sun
  • Jianchen Dang
  • Yang Yu
  • Fabio Beltram
  • Lucia Sorba
  • Ang Li
  • Bei-bei Li
  • Francesco Rossella
  • Xiulai XuEmail author
Research Article

Abstract

Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires.

Keywords

g-factor tensor diamagnetic coefficient crystal-phase quantum dot InP NWs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11934019, 61675228, 11721404, 51761145104, and 11874419), the Strategic Priority Research Program, the Instrument Developing Project and the Interdisciplinary Innovation Team of the Chinese Academy of Sciences (Nos. XDB28000000 and YJKYYQ20180036), the Key RD Program of Guangdong Province (No. 2018B030329001), and the Key Laboratory Fund (No. 614280303051701). We acknowledge financial support from the SUPERTOP project, QUANTERA ERA-NET Cofund in Quantum Technologies.

References

  1. [1]
    Imamoḡlu, A.; Awschalom, D. D.; Burkard, G.; DiVincenzo, D. P.; Loss, D.; Sherwin, M.; Small, A. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett.1999, 83, 4204–4207.Google Scholar
  2. [2]
    Loss, D.; DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A1998, 57, 120–126.Google Scholar
  3. [3]
    Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science2001, 292, 1897–1899.Google Scholar
  4. [4]
    Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science2001, 293, 1455–1457.Google Scholar
  5. [5]
    Menzel, A.; Subannajui, K.; Güder, F.; Moser, D.; Paul, O.; Zacharias, M. Multifunctional ZnO-nanowire-based sensor. Adv. Funct. Mater.2011, 21, 4342–4348.Google Scholar
  6. [6]
    Wang, X. D.; Li, Z. Z.; Zhuo, M. P.; Wu, Y. S.; Chen, S.; Yao, J. N.; Fu, H. B. Tunable near-infrared organic nanowire nanolasers. Adv. Funct. Mater.2017, 27, 1703470.Google Scholar
  7. [7]
    Ali, H.; Zhang, Y. Y.; Tang, J.; Peng, K.; Sun, S. B.; Sun, Y.; Song, F. L.; Falak, A.; Wu, S. Y.; Qian, C. J. et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small2018, 14, 1704429.Google Scholar
  8. [8]
    Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater.2011, 23, 198–215.Google Scholar
  9. [9]
    Lee, J.; Jo, S. B.; Kim, M.; Kim, H. G.; Shin, J.; Kim, H.; Cho, K. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells. Adv. Mater.2014, 26, 6706–6714.Google Scholar
  10. [10]
    Hoang, T. B.; Titova, L. V.; Yarrison-Rice, J. M.; Jackson, H. E.; Govorov, A. O.; Kim, Y.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Smith, L. M. Resonant excitation and imaging of nonequilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. Nano Lett.2007, 7, 588–595.Google Scholar
  11. [11]
    Shi, X. L.; Cao, M. S.; Yuan, J.; Zhao, Q. L.; Kang, Y. Q.; Fang, X. Y.; Chen, Y. J. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett.2008, 93, 183118.Google Scholar
  12. [12]
    Cross, R. B. M.; De Souza, M. M. Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett.2006, 89, 263513.Google Scholar
  13. [13]
    Smith, L. M.; Hoang, T. B.; Titova, L. V.; Jackson, H. E.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J.; Kim, Y.; Joyce, H. J.; Jagadish, C. Spatially resolved photoluminescence imaging of CdS and GaAs/AlGaAs nanowires. AIP Conf. Proc.2007, 893, 869–870.Google Scholar
  14. [14]
    Xue, H. L.; Kong, X. Z.; Liu, Z. R.; Liu, C. X.; Zhou, J. R.; Chen, W. Y.; Ruan, S. P.; Xu, Q. TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett.2007, 90, 201118.Google Scholar
  15. [15]
    Rosenwaks, Y.; Shapira, Y.; Huppert, D. Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP. Phys. Rev. B1992, 45, 9108–9119.Google Scholar
  16. [16]
    Casey, H. C. Jr.; Buehler, E. Evidence for low surface recombination velocity on n-type InP. Appl. Phys. Lett.1977, 30, 247–249.Google Scholar
  17. [17]
    Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. et al. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett.2009, 9, 648–654.Google Scholar
  18. [18]
    Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J. C.; Zwiller, V. Crystal phase quantum dots. Nano Lett.2010, 10, 1198–1201.Google Scholar
  19. [19]
    Bouwes Bavinck, M.; Jöns, K. D.; Zielinski, M.; Patriarche, G.; Harmand, J. C.; Akopian, N.; Zwiller, V. Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett.2016, 16, 1081–1085.Google Scholar
  20. [20]
    Dick, K. A.; Thelander, C.; Samuelson, L.; Caroff, P. Crystal phase engineering in single InAs nanowires. Nano Lett.2010, 10, 3494–3499.Google Scholar
  21. [21]
    Assali, S.; Gagliano, L.; Oliveira, D. S.; Verheijen, M. A.; Plissard, S. R.; Feiner, L. F.; Bakkers, E. P. A. M. Exploring crystal phase switching in GaP nanowires. Nano Lett.2015, 15, 8062–8069.Google Scholar
  22. [22]
    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D. Optical signatures of coupled quantum dots. Science2006, 311, 636–639.Google Scholar
  23. [23]
    Kato, Y.; Myers, R. C.; Driscoll, D. C.; Gossard, A. C.; Levy, J.; Awschalom, D. D. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science2003, 299, 1201–1204.Google Scholar
  24. [24]
    Pingenot, J.; Pryor, C. E.; Flatté, M. E. Method for full Bloch sphere control of a localized spin via a single electrical gate. Appl. Phys. Lett.2008, 92, 222502.Google Scholar
  25. [25]
    Salis, G.; Kato, Y.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C.; Awschalom, D. D. Electrical control of spin coherence in semiconductor nanostructures. Nature2001, 414, 619–622.Google Scholar
  26. [26]
    Jovanov, V.; Eissfeller, T.; Kapfinger, S.; Clark, E. C.; Klotz, F.; Bichler, M.; Keizer, J. G.; Koenraad, P. M.; Abstreiter, G.; Finley, J. J. Observation and explanation of strong electrically tunable exciton g factors in composition engineered In(Ga)As quantum dots. Phys. Rev. B2011, 83, 161303.Google Scholar
  27. [27]
    Godden, T. M.; Quilter, J. H.; Ramsay, A. J.; Wu, Y. W.; Brereton, P.; Luxmoore, I. J.; Puebla, J.; Fox, A. M.; Skolnick, M. S. Fast preparation of a single-hole spin in an InAs/GaAs quantum dot in a Voigt-geometry magnetic field. Phys. Rev. B2012, 85, 155310.Google Scholar
  28. [28]
    Bennett, A. J.; Pooley, M. A.; Cao, Y. M.; Sköld, N.; Farrer, I.; Ritchie, D. A.; Shields, A. J. Voltage tunability of single-spin states in a quantum dot. Nat. Commun.2013, 4, 1522.Google Scholar
  29. [29]
    Battiato, S.; Wu, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology2019, 30, 194004.Google Scholar
  30. [30]
    Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D: Appl. Phys.2010, 43, 445402.Google Scholar
  31. [31]
    Reimer, M. E.; Bulgarini, G.; Akopian, N.; Hocevar, M.; Bavinck, M. B.; Verheijen, M. A.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun.2012, 3, 737.Google Scholar
  32. [32]
    Lagoudakis, K. G.; McMahon, P. L.; Fischer, K. A.; Puri, S.; Müller, K.; Dalacu, D.; Poole, P. J.; Reimer, M. E.; Zwiller, V.; Yamamoto, Y. Initialization of a spin qubit in a site-controlled nanowire quantum dot. New J. Phys.2016, 18, 053024.Google Scholar
  33. [33]
    Haffouz, S.; Zeuner, K. D.; Dalacu, D.; Poole, P. J.; Lapointe, J.; Poitras, D.; Mnaymneh, K.; Wu, X. H.; Couillard, M.; Korkusinski, M. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide. Nano Lett.2018, 18, 3047–3052.Google Scholar
  34. [34]
    Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; M. Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature. 2008, 456, 369–372.Google Scholar
  35. [35]
    Murayama, M.; Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B1994, 49, 4710–4724.Google Scholar
  36. [36]
    Perera, S.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X. et al. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. Appl. Phys. Lett.2008, 93, 053110.Google Scholar
  37. [37]
    Zhang, L. J.; Luo, J. W.; Zunger, A.; Akopian, N.; Zwiller, V.; Harmand, J. C. Wide InP nanowires with wurtzite/zincblende superlattice segments are type-II whereas narrower nanowires become type-I: An atomistic pseudopotential calculation. Nano Lett.2010, 10, 4055–4060.Google Scholar
  38. [38]
    Kim, C. W.; Stringfellow, G. B.; Sadwick, L. P. CBE growth of InP using BPE and TBP: a comparative study. J. Cryst. Growth.1996, 164, 104–111.Google Scholar
  39. [39]
    Mrowinski, P.; Musial, A.; Maryński, A.; Syperek, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sęk, G. Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 μm. Appl. Phys. Lett.2015, 106, 053114.Google Scholar
  40. [40]
    Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A. A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T. L. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B2002, 65, 195315.Google Scholar
  41. [41]
    Brunner, K.; Abstreiter, G.; Böhm, G.; Tränkle, G.; Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett., 1994, 73, 1138–1141.Google Scholar
  42. [42]
    Fontana, Y.; Corfdir, P.; Van Hattem, B.; Russo-Averchi, E.; Heiss, M.; Sonderegger, S.; Magen, C.; Arbiol, J.; Phillips, R. T.; Morral, A. F. I. Exciton footprint of self-assembled AlGaAs quantum dots in core-shell nanowires. Phys. Rev. B2014, 90, 075307.Google Scholar
  43. [43]
    Tang, J.; Cao, S.; Gao, Y. A.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett.2014, 105, 041109.Google Scholar
  44. [44]
    Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater.2013, 12, 483–493.Google Scholar
  45. [45]
    Witek, B. J.; Heeres, R. W.; Perinetti, U.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins. Phys. Rev. B2011, 84, 195305.Google Scholar
  46. [46]
    Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B2007, 76, 033301.Google Scholar
  47. [47]
    van Bree, J.; Silov, A. Y.; van Maasakkers, M. L.; Pryor, C. E.; Flatté, M. E.; Koenraad, P. M. Anisotropy of electron and hole g tensors of quantum dots: An intuitive picture based on spin-correlated orbital currents. Phys. Rev. B2016, 93, 035311.Google Scholar
  48. [48]
    Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; Zhukov, E. A.; Semina, M. A.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.; Bayer, M. Large anisotropy of electron and hole g factors in infrared-emitting InAs/InAlGaAs self-assembled quantum dots. Phys. Rev. B2016, 93, 125302.Google Scholar
  49. [49]
    Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B1998, 57, 9088–9096.Google Scholar
  50. [50]
    Cao, S.; Tang, J.; Sun, Y.; Peng, K.; Gao, Y. A.; Zhao, Y. H.; Qian, C. J.; Sun, S. B.; Ali, H.; Shao, Y. T. et al. Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects. Nano Res.2016, 9, 306–316.Google Scholar
  51. [51]
    Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B2002, 66, 193303.Google Scholar
  52. [52]
    van Bree, J.; Silov, A. Y.; Koenraad, P. M.; Flatté, M. E. Geometric and compositional influences on spin-orbit induced circulating currents in nanostructures. Phys. Rev. B2014, 90, 165306.Google Scholar
  53. [53]
    Buscemi, F.; Royo, M.; Bertoni, A.; Goldoni, G. Magnetophotoluminescence in GaAs/AlAs core-multishell nanowires: A theoretical investigation. Phys. Rev. B2015, 92, 165302.Google Scholar
  54. [54]
    Green, M. Solution routes to III–V semiconductor quantum dots. Curr. Opin. Solid State Mater. Sci.2002, 6, 355–363.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shiyao Wu
    • 1
    • 2
  • Kai Peng
    • 1
    • 2
  • Sergio Battiato
    • 3
  • Valentina Zannier
    • 3
  • Andrea Bertoni
    • 4
  • Guido Goldoni
    • 4
    • 5
  • Xin Xie
    • 1
    • 2
  • Jingnan Yang
    • 1
    • 2
  • Shan Xiao
    • 1
    • 2
  • Chenjiang Qian
    • 1
    • 2
  • Feilong Song
    • 1
    • 2
  • Sibai Sun
    • 1
    • 2
  • Jianchen Dang
    • 1
    • 2
  • Yang Yu
    • 1
    • 2
  • Fabio Beltram
    • 3
  • Lucia Sorba
    • 3
  • Ang Li
    • 6
  • Bei-bei Li
    • 1
  • Francesco Rossella
    • 3
  • Xiulai Xu
    • 1
    • 2
    • 7
    Email author
  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Topological Quantum Computation and School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratorio NESTScuola Normale Superiore and Istituto Nanoscienze-CNRPisaItaly
  4. 4.S3, Istituto Nanoscienze-CNR41125Italy
  5. 5.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
  6. 6.Beijing Key Lab of Microstructure and Property of Advanced MaterialsBeijing University of TechnologyBeijingChina
  7. 7.Songshan Lake Materials LaboratoryDongguanChina

Personalised recommendations