Nano Research

, Volume 12, Issue 11, pp 2808–2814 | Cite as

Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering

  • Hongyu Jiang
  • Jing Li
  • Chengrong Cao
  • Xiaozhi Liu
  • Ming Liu
  • Yutian Shen
  • Yanhui Liu
  • Qinghua Zhang
  • Weihua Wang
  • Lin GuEmail author
  • Baoan SunEmail author
Research Article


The surface-enhanced Raman spectroscopy (SERS) is a technique for the detection of analytes on the surface with an ultrahigh sensitivity down to the atomic-scale, yet the fabrication of SERS materials such as nanoparticles or arrays of coinage metals often involve multiple complex steps with the high cost and pollution, largely limiting the application of SERS. Here, we report a complex hierarchical metallic glassy (MG) nanostructure by simply replicating the surface microstructure of butterfly wings through vapor deposition technique. The MG nanostructure displays an excellent SERS effect and moreover, a superhydrophobicity and self-cleaning behavior. The SERS effect of the MG nanostructure is attributed to the intrinsic nanoscale structural heterogeneities on the MG surface, which provides a large number of hotspots for the localized electromagnetic field enhancement affirmed by the finite-difference time-domain (FDTD) simulation. Our works show that the MG could be a new potential SERS material with low cost and good durability, well extending the functional application of this kind of material.


metallic glassy structural heterogeneities surface enhanced Raman scattering superhydrophobicity butterfly wing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the support of the National Natural Science Foundation of China (Nos. 51822107, 51671121, 51761135125, and 61888102), the National Key Research and Development Program (No. 2018YFA0703603) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB07030200 and XDB30000000). We appreciate Professor Di Zhang’s deep discussions on the usage of bio-templates. The authors also thank Ruhao Pan and Xianzhong Yang for discussions on collecting Raman spectra, Mo Han Wang for the measurement of UV–vis absorption spectra and Kun Chen for the dielectric coefficient measurement.

Supplementary material

12274_2019_2517_MOESM1_ESM.pdf (1.6 mb)
Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering


  1. [1]
    Goldberg-Oppenheimer, P.; Mahajan, S.; Steiner, U. Hierarchical electrohydrodynamic structures for surface-enhanced Raman scattering. Adv. Mater.2012, 24, OP175–OP180.Google Scholar
  2. [2]
    Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today2012, 15, 16–25.Google Scholar
  3. [3]
    Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem.2008, 1, 601–626.Google Scholar
  4. [4]
    Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater.2016, 1, 16021.Google Scholar
  5. [5]
    Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature2010, 464, 392–395.Google Scholar
  6. [6]
    Li, J. F.; Zhang, Y. J.; Rudnev, A. V.; Anema, J. R.; Li, S. B.; Hong, W. J.; Rajapandiyan, P.; Lipkowski, J.; Wandlowski, T.; Tian, Z. Q. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc.2015, 137, 2400–2408.Google Scholar
  7. [7]
    Mo, X.; Wu, Y. W.; Zhang, J. H.; Hang, T.; Li, M. Bioinspired multifunctional Au nanostructures with switchable adhesion. Langmuir2015, 31, 10850–10858.Google Scholar
  8. [8]
    Oh, Y. J.; Jeong, K. H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater.2012, 24, 2234–2237.Google Scholar
  9. [9]
    Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater.2006, 18, 491–495.Google Scholar
  10. [10]
    Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy2017, 5, 72–78.Google Scholar
  11. [11]
    Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications; Springer: Heidelberg, 2006.Google Scholar
  12. [12]
    Li, J. F.; Anema, J. R.; Wandlowski, T.; Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev.2015, 44, 8399–8409.Google Scholar
  13. [13]
    Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett.2010, 10, 553–561.Google Scholar
  14. [14]
    Shan, Y. F.; Zheng, Z. H.; Liu, J. J.; Yang, Y.; Li, Z. Y.; Huang, Z. R.; Jiang, D. L. Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate. NPJ Comput. Mater.2017, 3, 11.Google Scholar
  15. [15]
    Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering. Nanoscale2015, 7, 17079–17087.Google Scholar
  16. [16]
    Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater.2011, 23, 461–476.Google Scholar
  17. [17]
    Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature2009, 457, 868–873.Google Scholar
  18. [18]
    Wang, J. Q.; Liu, Y. H.; Chen, M. W.; Xie, G. Q.; Louzguine-Luzgin, D. V.; Inoue, A.; Perepezko, J. H. Rapid degradation of Azo dye by Fe-based metallic glass powder. Adv. Funct. Mater.2012, 22, 2567–1570.Google Scholar
  19. [19]
    Liang, S. X.; Jia, Z.; Liu, Y. J.; Zhang, W. C.; Wang, W. M.; Lu J.; Zhang, L. C. Compelling rejuvenated catalytic performance in metallic glasses. Adv. Mater.2018, 30, 1802764.Google Scholar
  20. [20]
    Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater.2016, 28, 10293–10297.Google Scholar
  21. [21]
    Tan, Y. W.; Gu, J. J.; Xu, L. H.; Zang, X. N.; Liu, D. X.; Zhang, W.; Liu, Q. L.; Zhu, S. M.; Su, H. L.; Feng, C. L. et al. High-density hotspots engineered by naturally piled-up subwavelength structures in threedimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv. Funct. Mater.2012, 22, 1578–1585.Google Scholar
  22. [22]
    Xu, B. B.; Zhang, Y. L.; Zhang, W. Y.; Liu, X. Q.; Wang, J. N.; Zhang, X. L.; Zhang, D. D.; Jiang, H. B.; Zhang, R.; Sun, H. B. Silver-coated rose petal: Green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Adv. Opt. Mater.2013, 1, 56–60.Google Scholar
  23. [23]
    Qian, C.; Ni, C.; Yu, W. X.; Wu, W. G.; Mao, H. Y.; Wang, Y. F.; Xu, J. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering. Small2011, 7, 1801–1806.Google Scholar
  24. [24]
    Chou, S. Y.; Yu, C. C.; Yen, Y. T.; Lin, K. T.; Chen, H. L.; Su, W. F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal. Chem.2015, 87, 6017–6024.Google Scholar
  25. [25]
    Mu, Z. D.; Zhao, X. W.; Xie, Z. Y.; Zhao, Y. J.; Zhong, Q. F.; Bo, L.; Gu, Z. Z. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J. Mater. Chem. B2013, 1, 1607–1613.Google Scholar
  26. [26]
    Huang, J. A.; Zhang, Y. L.; Zhao, Y. Q.; Zhang, X. L.; Sun, M. L.; Zhang, W. J. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale2016, 8, 11487–11493.Google Scholar
  27. [27]
    Tan, Y. W.; Gu, J. J.; Zang, X. N.; Xu, W.; Shi, K. C.; Xu, L. H.; Zhang, D. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew. Chem., Int. Ed.2011, 50, 8307–8311.Google Scholar
  28. [28]
    Tanahashi, I.; Harada, Y. Silver nanoparticles deposited on TiO2-coated cicada and butterfly wings as naturally inspired SERS substrates. J. Mater. Chem. C2015, 3, 5721–5726.Google Scholar
  29. [29]
    Zhang, Q. X.; Chen, Y. X.; Guo, Z.; Liu, H. L.; Wang, D. P.; Huang, X. J. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. ACS Appl. Mater. Interfaces2013, 5, 10633–10642.Google Scholar
  30. [30]
    Liu, X. J.; Zong, C. H.; Ai, K. L.; He, W. H.; Lu, L. H. Engineering natural materials as surface-enhanced Raman spectroscopy substrates for in situ molecular sensing. ACS Appl. Mater. Interfaces2012, 4, 6599–6608.Google Scholar
  31. [31]
    Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater.2016, 28, 4871–4876.Google Scholar
  32. [32]
    Kong, T. T.; Luo, G. Y.; Zhao, Y. J.; Liu, Z. Bioinspired superwettability micro/nanoarchitectures: Fabrications and applications. Adv. Funct. Mater.2019, 29, 1808012.Google Scholar
  33. [33]
    Schmidt, M. S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater.2012, 24, OP11–OP18.Google Scholar
  34. [34]
    Yang, L. B.; Liu, H. L.; Ma, Y. M.; Liu, J. H. Solvent-induced hot spot switch on silver nanorod enhanced Raman spectroscopy. Analyst2012, 137, 1547–1549.Google Scholar
  35. [35]
    Wu, Y. W.; Hang, T.; Yu, Z. Y.; Gu, J. J.; Li, M. Quasi-periodical 3D hierarchical silver nanosheets with sub-10 nm nanogap applied as an effective and applicable SERS substrate. Adv. Mater. Interfaces2015, 2, 1500359.Google Scholar
  36. [36]
    Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics—A route to nanoscale optical devices. Adv. Mater.2001, 13, 1501–1505.Google Scholar
  37. [37]
    Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.2007, 58, 267–297.Google Scholar
  38. [38]
    Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater.2010, 20, 2815–2824.Google Scholar
  39. [39]
    Xu, W. G.; Xiao, J. Q.; Chen, Y. F.; Chen, Y. B.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater.2013, 25, 928–933.Google Scholar
  40. [40]
    Hanske, C.; Sanz-Ortiz, M. N.; Liz-Marzán, L. M. Silica-coated plasmonic metal nanoparticles in action. Adv. Mater.2018, 30, 1707003.Google Scholar
  41. [41]
    Yang, X. Z.; Li, J.; Zhao, Y. X.; Yang, J. H.; Zhou, L. Y.; Dai, Z. G.; Guo, X.; Mu, S. J.; Liu, Q. Z.; Jiang, C. M. et al. Self-assembly of Au@Ag core–shell nanocuboids into staircase superstructures by droplet evaporation. Nanoscale2018, 10, 142–149.Google Scholar
  42. [42]
    Wagner, H.; Bedorf, D.; Küchemann, S.; Schwabe, M.; Zhang, B.; Arnold, W.; Samwer, K. Local elastic properties of a metallic glass. Nat. Mater.2011, 10, 439–442.Google Scholar
  43. [43]
    Ye, J. C.; Lu, J.; Liu, C. T.; Wang, Q.; Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater.2010, 9, 619–623.Google Scholar
  44. [44]
    Liu, Y. H.; Wang, D.; Nakajima, K.; Zhang, W.; Hirata, A.; Nishi, T.; Inoue, A.; Chen, M. W. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys. Rev. Lett.2011, 106, 125504.Google Scholar
  45. [45]
    Hwang, J. W.; Melgarejo, Z. H.; Kalay, Y. E.; Kalay, I.; Kramer, M. J.; Stone, D. S.; Voyles, P. M. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett.2012, 108, 195505.Google Scholar
  46. [46]
    Miracle, D. B. A structural model for metallic glasses. Nat. Mater.2004, 3, 697–702.Google Scholar
  47. [47]
    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P. L.; Luo, W. K.; Shastri, S. D.; Ma, E. Polyamorphism in a metallic glass. Nat. Mater.2007, 6, 192–197.Google Scholar
  48. [48]
    Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature2006, 439, 419–425.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hongyu Jiang
    • 1
    • 2
  • Jing Li
    • 3
  • Chengrong Cao
    • 1
  • Xiaozhi Liu
    • 1
    • 2
  • Ming Liu
    • 1
    • 2
  • Yutian Shen
    • 1
    • 2
  • Yanhui Liu
    • 1
    • 4
  • Qinghua Zhang
    • 1
    • 4
  • Weihua Wang
    • 1
    • 2
    • 4
  • Lin Gu
    • 1
    • 2
    • 4
    Email author
  • Baoan Sun
    • 1
    • 2
    • 4
    Email author
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Songshan Lake Materials LaboratoryDongguanChina

Personalised recommendations