Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition

  • Jieyuan Liang
  • Lijie ZhangEmail author
  • Xiaoxiao Li
  • Baojun Pan
  • Tingyan Luo
  • Dayan Liu
  • Chao Zou
  • Nannan Liu
  • Yue Hu
  • Keqin Yang
  • Shaoming HuangEmail author
Research Article


Two-dimensional (2D) WS2 offers great prospects for assembling next-generation optoelectronic and electronic devices due to its thickness-dependent optical and electronic properties. However, layer-number-controlled growth of WS2 is still a challenge up to now. This work presents controlled growth of bilayer WS2 triangular flakes by carbon-nanoparticle-assisted chemical vapor deposition (CVD) process. The growth mechanism is also proposed. In addition, the field effect transistors (FETs) based on monolayer and bilayer WS2 are also fabricated and investigated. The bilayer FET displays a mobility of 34 cm2·V-1·s-1, much higher than that of the monolayer FET. The high figures of merit make bilayer WS2 a promising candidate in high-performance electronics and optoelectronics.


bilayer WS2 growth carbon nanoparticles chemical vapor deposition (CVD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 51920105004, 51420105002, and 51572199), and the Zhejiang Provincial Natural Science Foundation of China (No. LY19E030008). J. L. would like to thank Yaqi Huang for drawing the schematic.

Supplementary material

12274_2019_2516_MOESM1_ESM.pdf (1.9 mb)
Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.Google Scholar
  2. [2]
    Plutnar, J.; Pumera, M.; Sofer, Z. The chemistry of CVD graphene. J. Mater. Chem. C 2018, 6, 6082–6101.CrossRefGoogle Scholar
  3. [3]
    Wu, X.; Mu, F. W.; Wang, Y. H.; Zhao, H. Y. Graphene and graphene-based nanomaterials for DNA detection: A review. Molecules 2018, 23, 2050.CrossRefGoogle Scholar
  4. [4]
    Su, S.; Sun, H. F.; Xu, F.; Yuwen, L.; Fan, C. H.; Wang, L. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchimica Acta 2014, 181, 1497–1503.CrossRefGoogle Scholar
  5. [5]
    Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/ h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063–2070.CrossRefGoogle Scholar
  6. [6]
    Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.CrossRefGoogle Scholar
  7. [7]
    Wan, Y.; Xiao J.; Li, J. Z.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z. G.; Zhang, H.; Wang, Y. L. et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater. 2018, 30, 1703888.CrossRefGoogle Scholar
  8. [8]
    Zhou, Y. Q.; Tan, H. J.; Sheng, Y. W.; Fan, Y.; Xu, W. S.; Warner, J. H. Utilizing interlayer excitons in bilayer WS2 for increased photovoltaic response in ultrathin graphene vertical cross-bar photodetecting tunneling transistors. ACS Nano 2018, 12, 4669–4677.CrossRefGoogle Scholar
  9. [9]
    Kim, H. C.; Kim, H.; Lee, J. U.; Lee, H. B.; Choi, D. H.; Lee, J. H.; Lee, W. H.; Jhang, S. H.; Park, B. H.; Cheong, H. et al. Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 2015, 9, 6854–6860.CrossRefGoogle Scholar
  10. [10]
    Li, S. L.; Wakabayash, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.CrossRefGoogle Scholar
  11. [11]
    Yang, R. L.; Feng, S. H.; Xiang, J. Y.; Jia, Z. Y.; Mu, C. P.; Wen, F. S.; Liu, Z. Y. Ultrahigh-gain and fast photodetectors built on atomically thin bilayer tungsten disulfide grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2017, 9, 42001–42010.CrossRefGoogle Scholar
  12. [12]
    Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semiconductors 2017, 38, 034001.CrossRefGoogle Scholar
  13. [13]
    Zhang, H.; Li, C.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Complementary logic with voltage zero-loss and nano-watt power via configurable MoS2/WSe2 gate. Adv. Funct. Mater. 2018, 28, 1805171.CrossRefGoogle Scholar
  14. [14]
    Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.CrossRefGoogle Scholar
  15. [15]
    Thripuranthaka, M.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158–1163.CrossRefGoogle Scholar
  16. [16]
    Lin, H. C.; Wang, J. W.; Luo, Q. Q.; Peng, H.; Luo, C. H.; Qi, R. J.; Huang, R.; Travas-Sejdic, J.; Duan, C. G. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. J. Alloys Compd. 2017, 699, 222–229.CrossRefGoogle Scholar
  17. [17]
    Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215–21222.CrossRefGoogle Scholar
  18. [18]
    Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 2013, 7, 5235–5242.CrossRefGoogle Scholar
  19. [19]
    Zheng, J. J.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.CrossRefGoogle Scholar
  20. [20]
    Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688–1695.CrossRefGoogle Scholar
  21. [21]
    Samad, L.; Bladow, S. M.; Ding, Q.; Zhuo, J. Q.; Jacobberger, R. M.; Arnold, M. S.; Jin, S. Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 2016, 10, 7039–7046.CrossRefGoogle Scholar
  22. [22]
    Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 2018, 140, 14217–14223.CrossRefGoogle Scholar
  23. [23]
    Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464–472.CrossRefGoogle Scholar
  24. [24]
    Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.CrossRefGoogle Scholar
  25. [25]
    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.CrossRefGoogle Scholar
  26. [26]
    Tian, H.; Khanaki, A.; Das, P.; Zheng, R. J.; Cui, Z. J.; He, Y. W.; Shi, W. H.; Xu, Z. G.; Lake, R.; Liu, J. L. Role of carbon interstitials in transition metal substrates on controllable synthesis of high-quality large-area two-dimensional hexagonal boron nitride layers. Nano Lett. 2018, 18, 3352–3361.CrossRefGoogle Scholar
  27. [27]
    Ismach, A.; Chou, H.; Mende, P.; Dolocan, A.; Addou, R.; Aloni, S.; Wallace, R.; Feenstra, R.; Ruoff, R. S.; Colombo, L. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater. 2017, 4, 025117.CrossRefGoogle Scholar
  28. [28]
    Fan, X. P.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Xu, T.; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 2017, 11, 4892–4898.CrossRefGoogle Scholar
  29. [29]
    Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.CrossRefGoogle Scholar
  30. [30]
    Veres, M.; Füle, M.; Tóth, S.; Koós, M.; Pócsik, I. Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 2004, 13, 1412–1415.CrossRefGoogle Scholar
  31. [31]
    Saxena, K.; Shukla, A. K.; Avasthi, D. K.; Kabiraj, D.; Vankar, V. D. Raman and electron field emission studies of the order-disorder transition in Ar ion implanted graphite. Nucl Instrum Methods Phys Res Sec B: Beam Interact Mater Atoms 2014, 318, 276–280.CrossRefGoogle Scholar
  32. [32]
    Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.CrossRefGoogle Scholar
  33. [33]
    Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974–5980.CrossRefGoogle Scholar
  34. [34]
    McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep. 2016, 6, 35154.CrossRefGoogle Scholar
  35. [35]
    Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: A typical study on WS2. Adv. Mater. 2017, 29, 1603550.CrossRefGoogle Scholar
  36. [36]
    Xu, Z. Q.; Zhang, Y. P.; Lin, S. H.; Zheng, C. X.; Zhong, Y. L.; Xia, X.; Li, Z. P.; Sophia, P. J.; Fuhrer, M. S.; Cheng, Y. B. et al. Synthesis and transfer of large-area monolayer WS2 crystals: Moving toward the recyclable use of sapphire substrates. ACS Nano 2015, 9, 6178–6187.CrossRefGoogle Scholar
  37. [37]
    Yue, Y. C.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F. L.; Wang, Y.; Zhang, D. H.; Li, R. J.; Dong, H. L.; Hu, W. P. et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 22435–22444.CrossRefGoogle Scholar
  38. [38]
    Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755.CrossRefGoogle Scholar
  39. [39]
    Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.CrossRefGoogle Scholar
  40. [40]
    Chen, F.; Ding, S.; Su, W. T. A feasible approach to fabricate twodimensional WS2 flakes: From monolayer to multilayer. Ceram. Int. 2018, 44, 22108–22112.CrossRefGoogle Scholar
  41. [41]
    Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019–2025.CrossRefGoogle Scholar
  42. [42]
    Gaur, A. P. S.; Sahoo, S.; Scott, J. F.; Katiyar, R. S. Electron-phonon interaction and double-resonance Raman studies in monolayer WS2. J. Phys. Chem. C 2015, 119, 5146–5151.CrossRefGoogle Scholar
  43. [43]
    Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jieyuan Liang
    • 1
  • Lijie Zhang
    • 1
    Email author
  • Xiaoxiao Li
    • 1
  • Baojun Pan
    • 1
  • Tingyan Luo
    • 1
  • Dayan Liu
    • 1
  • Chao Zou
    • 1
  • Nannan Liu
    • 1
  • Yue Hu
    • 1
  • Keqin Yang
    • 1
  • Shaoming Huang
    • 2
    Email author
  1. 1.Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouChina
  2. 2.School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina

Personalised recommendations