Advertisement

Nano Research

, Volume 12, Issue 11, pp 2788–2795 | Cite as

Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering

  • Yansheng Liu
  • Feng LuoEmail author
Research Article
  • 41 Downloads

Abstract

In this paper, the study of using masks to directly generate large area, highly ordered and periodical nanostructure has been exhibited. Periodic Au nano-discs(NDs) arrays have been fabricated on top of graphene by using holey Si3N4 mask which is directly fixed on top of graphene and Au metal is deposited through the holes in mask by thermal evaporation method under vacuum condition. This fabrication method provides an easy, fast and cost efficiency way to generate periodical nanostructure. Also, Au nanoholes(NHs) structure has been studied by using holey Si3N4 as a template. The surface-enhanced Raman scattering (SERS) sensitivities of periodical Au NDs/graphene and graphene/Au NHs hybrid structures have been systematically studied. The internal mechanisms could be explained by chemical mechanism effect of graphene and electromagnetic mechanism effect of metallic nano-structures. The enhancement factors have been systematically investigated by varying the diameter and the thickness of Au discs and Au NHs. Raman mappings of Au NDs with 2.5 μm diameter illustrate that the larger SERS enhancements exist in the rim of NDs which has good agreement with the electric field simulation result. The SERE enhancement factors of fluorescein obtained from Au NDs/graphene substrates shows an improvement factor of 500% in comparison of graphene substrate. The calculated SERS enhancement factors of graphene/Au NHs achieve 1,200% in comparison of graphene/planar Au film substrate.

Keywords

graphene surface-enhanced Raman scattering (SERS) Au nano-discs (NDs) Au nanoholes (NHs) periodic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been supported by China Scholarship Council, Chinese National Natural Science and MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD with the funding numbers of 201606180013, 51520105003 and MAT2017-89868-P, respectively.

Supplementary material

12274_2019_2514_MOESM1_ESM.pdf (922 kb)
Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering

References

  1. [1]
    Liu, L.; Shao, M. W.; Cheng, L.; Zhuo, S. J.; Que, R. H.; Lee, S. T. Edge-enhanced Raman scattering effect from Au deposited nanoedge array. Appl. Phys. Lett.2011, 98, 073114.CrossRefGoogle Scholar
  2. [2]
    Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V. G.; Geim, A. K.; Grigorenko, A. N.; Novoselov, K. S.; Ferrari, A. C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano2010, 4, 5617–5626.CrossRefGoogle Scholar
  3. [3]
    Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA2012, 109, 9281–9286.CrossRefGoogle Scholar
  4. [4]
    Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuators B: Chem.2019, 285, 462–469.CrossRefGoogle Scholar
  5. [5]
    Bamrungsap, S.; Treerattrakul, K. Development of SERS based biosensor for cancer screening. Asian J. Med. Biomed.2018, 28.Google Scholar
  6. [6]
    Mosier-Boss, P. A. Review of SERS substrates for chemical sensing. Nanomaterials2017, 7, 142.CrossRefGoogle Scholar
  7. [7]
    Xu, S. C.; Jiang, S. Z.; Wang, J. H.; Wei, J.; Yue, W. W.; Ma, Y. Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sens. Actuators B: Chem.2016, 222, 1175–1183.CrossRefGoogle Scholar
  8. [8]
    Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science1997, 275, 1102–1106.CrossRefGoogle Scholar
  9. [9]
    Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.2006, 128, 2115–2120.CrossRefGoogle Scholar
  10. [10]
    Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement?. Nano Lett.2010, 10, 553–561.CrossRefGoogle Scholar
  11. [11]
    Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys.: Condens. Matter1992, 4, 1143–1212.Google Scholar
  12. [12]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett.2008, 8, 902–907.CrossRefGoogle Scholar
  13. [13]
    Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett.2007, 91, 163513.CrossRefGoogle Scholar
  14. [14]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett.2008, 100, 016602.CrossRefGoogle Scholar
  15. [15]
    Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science2008, 320, 1308–1308.CrossRefGoogle Scholar
  16. [16]
    Ren, W.; Fang, Y. X.; Wang, E. K. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano2011, 5, 6425–6433.CrossRefGoogle Scholar
  17. [17]
    He, S. J.; Liu, K. K.; Su, S.; Yan, J.; Mao, X. H.; Wang, D. F.; He, Y.; Li, L. J.; Song, S. P.; Fan, C. H. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem.2012, 84, 4622–4627.CrossRefGoogle Scholar
  18. [18]
    Chourpa, I.; Lei, F. H.; Dubois, P.; Manfait, M.; Sockalingum, G. D. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem. Soc. Rev.2008, 37, 993–1000.CrossRefGoogle Scholar
  19. [19]
    Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev.2011, 111, 3736–3827.CrossRefGoogle Scholar
  20. [20]
    Wang, P.; Xia, M.; Liang, O. W.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H. N.; Xie, Y. H. Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem.2015, 87, 10255–10261CrossRefGoogle Scholar
  21. [21]
    Mu, C.; Zhang, J. P.; Xu, D. S. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology2010, 21, 015604.CrossRefGoogle Scholar
  22. [22]
    Du, Y. X.; Zhao, Y.; Qu, Y.; Chen, C. H.; Chen, C. M.; Chuang, C. H.; Zhu, Y. W. Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C2014, 2, 4683–4691.CrossRefGoogle Scholar
  23. [23]
    Xu, W. G.; Xiao, J. Q.; Chen, Y. F.; Chen, Y. B.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater.2013, 25, 928–933.CrossRefGoogle Scholar
  24. [24]
    Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H.; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater.2010, 22, 4136–4139.CrossRefGoogle Scholar
  25. [25]
    Sivashanmugan, K.; Liao, J. D.; Liu, B. H.; Yao, C. K. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Anal. Chim. Acta2013, 800, 56–64.CrossRefGoogle Scholar
  26. [26]
    Sivashanmugan, K.; Liao, J. D.; Shao, P. L.; Liu, B. H.; Tseng, T. Y.; Chang, C. Y. Intense Raman scattering on hybrid Au/Ag nanoplatforms for the distinction of MMP-9-digested collagen type-I fiber detection. Biosens. Bioelectron.2015, 72, 61–70.CrossRefGoogle Scholar
  27. [27]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of highquality and uniform graphene films on copper foils. Science2009, 324, 1312–1314.CrossRefGoogle Scholar
  28. [28]
    Wang, L. L.; Roitberg, A.; Meuse, C.; Gaigalas, A. K. Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim. Acta Part A: Mol. Biomol. Spectros.2001, 57, 1781–1791.CrossRefGoogle Scholar
  29. [29]
    Hildebrandt, P.; Stockburger, M. Surface enhanced resonance Raman study on fluorescein dyes. J. Raman Spectrosc.1986, 17, 55–58.CrossRefGoogle Scholar
  30. [30]
    Ray III, K. G.; McCreery, R. L. Characterization of the surface carbonyl and hydroxyl coverage on glassy carbon electrodes using Raman spectroscopy. J. Electroanal. Chem.1999, 469, 150–158.CrossRefGoogle Scholar
  31. [31]
    Xu, W. G.; Mao, N. N.; Zhang, J. Graphene: a platform for surface-enhanced Raman spectroscopy. Small2013, 9, 1206–1224.CrossRefGoogle Scholar
  32. [32]
    Zhang, D. M.; Vangala, K.; Jiang, D. P.; Zou, S. G.; Pechan, T. Drop coating deposition Raman spectroscopy of fluorescein isothiocyanate labeled protein. Appl. Spectrosc.2010, 64, 1078–1085.CrossRefGoogle Scholar
  33. [33]
    Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett.2008, 8, 1923–1928.CrossRefGoogle Scholar
  34. [34]
    Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Salerno, M.; Schider, G.; Lamprecht, B.; Leitner, A.; Aussenegg, F. R. Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys. Rev. B2002, 65, 075419.CrossRefGoogle Scholar
  35. [35]
    Liu, D. M.; Wang, Q. K.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci.2015, 356, 364–369.CrossRefGoogle Scholar
  36. [36]
    Maurer, T.; Nicolas, R.; Lévêque, G.; Subramanian, P.; Proust, J.; Béal, J.; Schuermans, S.; Vilcot, J. P.; Herro, Z.; Kazan, M. et al. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics2014, 9, 507–512.CrossRefGoogle Scholar
  37. [37]
    Foucher, F.; Guimbretière, G.; Bost, N.; Westall, F. Petrographical and mineralogical applications of Raman mapping. In Raman Spectroscopy and Applications. Maaz, K., Ed.; IntechOpen: London, 2017; pp 163–180.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMDEA Nanoscience, Faraday 9Ciudad Universitaria de CantoblancoMadridSpain

Personalised recommendations