Advertisement

2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

  • Yanqiang LiEmail author
  • Huiyong Huang
  • Siru ChenEmail author
  • Xin Yu
  • Chao Wang
  • Tingli MaEmail author
Research Article
  • 58 Downloads

Abstract

Designing a highly efficient non-precious based oxygen reduction reaction (ORR) electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells. Herein, we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere (NHCS) for ORR. What’s interesting is that the carbon microsphere is composed of two-dimensional (2D) nanoplate that could provide more exposed active sites. The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure. The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial Pt/C catalyst. Moreover, it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm−2 and high specific capacity of 701 mA·h·g−1. The special hollow structure composed 2D nanoplate, high surface area, as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity. The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.

Keywords

oxygen reduction reaction Zn-air battery Fe3O4 N doping hollow microsphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51772039), the Fundamental Research Funds for the Central University (No. DUT18LK13). The Research Center for Solar Light Energy Conversion, Kyushu Institute of Technology, Japan also supports this work financially.

Supplementary material

12274_2019_2512_MOESM1_ESM.pdf (75 kb)
2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

References

  1. [1]
    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.CrossRefGoogle Scholar
  2. [2]
    Wang, T. T.; Wu, J. H.; Liu, Y. L.; Cui, X.; Ding, P.; Deng, J.; Zha, C. Y.; Coy, E.; Li, Y. G. Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Mater. 2019, 16, 24–30.CrossRefGoogle Scholar
  3. [3]
    Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363.CrossRefGoogle Scholar
  4. [4]
    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  5. [5]
    Wang, N.; Li, L. G.; Zhao, D. K.; Kang, X. W.; Tang, Z. H.; Chen, S. W. Graphene composites with cobalt sulfide: Efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Small 2017, 13, 1701025.CrossRefGoogle Scholar
  6. [6]
    Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.CrossRefGoogle Scholar
  7. [7]
    Tian, H.; Wang, N.; Xu, F. G.; Zhang, P. F.; Hou, D.; Mai, Y. Y.; Feng, X. L. Nitrogen-doped carbon nanosheets and nanoflowers with holey mesopores for efficient oxygen reduction catalysis. J. Mater. Chem. A 2018, 6, 10354–10360.CrossRefGoogle Scholar
  8. [8]
    Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.CrossRefGoogle Scholar
  9. [9]
    Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.CrossRefGoogle Scholar
  10. [10]
    Tang, F.; Lei, H. T.; Wang, S. J.; Wang, H. X.; Jin, Z. X. A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale 2017, 9, 17364–17370.CrossRefGoogle Scholar
  11. [11]
    Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675–3679.CrossRefGoogle Scholar
  12. [12]
    Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.CrossRefGoogle Scholar
  13. [13]
    Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.CrossRefGoogle Scholar
  14. [14]
    Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894–1901.CrossRefGoogle Scholar
  15. [15]
    Han, C.; Li, Q.; Wang, D. W.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction. Small 2018, 14, 1703642.CrossRefGoogle Scholar
  16. [16]
    Luo, H.; Jiang, W. J.; Zhang, Y.; Niu, S.; Tang, T.; Huang, L. B.; Chen, Y. Y.; Wei, Z. D.; Hu, J. S. Self-terminated activation for high-yield production of N, P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon 2018, 128, 97–105.CrossRefGoogle Scholar
  17. [17]
    Chai, G. L.; Qiu, K.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.CrossRefGoogle Scholar
  18. [18]
    Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.CrossRefGoogle Scholar
  19. [19]
    Borghei, M.; Laocharoen, N.; Kibena-Põldsepp, E.; Johansson, L. S.; Campbell, J.; Kauppinen, E.; Tammeveski, K.; Rojas, O. J. Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Appl. Catal. B: Environ. 2017, 204, 394–402.CrossRefGoogle Scholar
  20. [20]
    Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 2019, 241, 442–451.CrossRefGoogle Scholar
  21. [21]
    Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Facile synthesis of N, S co-doped porous carbons from a dual-ligand metal organic framework for high performance oxygen reduction reaction catalysts. Electrochim. Acta 2017, 254, 148–154.CrossRefGoogle Scholar
  22. [22]
    Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.CrossRefGoogle Scholar
  23. [23]
    Hua, Y. Q.; Jiang, T. T.; Wang, K.; Wu, M. M.; Song, S. Q.; Wang, Y.; Tsiakaras, P. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor. Appl. Catal. B: Environ. 2016, 194, 202–208.CrossRefGoogle Scholar
  24. [24]
    Wang, H. T.; Wang, W.; Xu, Y. Y.; Dong, S.; Xiao, J. W.; Wang, F.; Liu, H. F.; Xia, B. Y. Hollow nitrogen-doped carbon spheres with Fe3O4 nanoparticles encapsulated as a highly active oxygen-reduction catalyst. ACS Appl. Mater. Interfaces 2017, 9, 10610–10617.CrossRefGoogle Scholar
  25. [25]
    Wang, Y.; Liu, H. Y.; Wang, K.; Song, S. Q.; Tsiakaras, P. 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2017, 210, 57–66.CrossRefGoogle Scholar
  26. [26]
    Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H. Y.; Kim, B.; Joo, S. H.; Lee, K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem. Soc. Rev. 2018, 47, 8173–8202.CrossRefGoogle Scholar
  27. [27]
    Pei, Y. C.; Qi, Z. Y.; Li, X. L.; Maligal-Ganesh, R. V.; Goh, T. W.; Xiao, C. X.; Wang, T. Y.; Huang, W. Y. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. J. Mater. Chem. A 2017, 5, 6186–6192.CrossRefGoogle Scholar
  28. [28]
    Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.CrossRefGoogle Scholar
  29. [29]
    Gao, S. Y.; Fan, B. F.; Feng, R.; Ye, C. L.; Wei, X. J.; Liu, J.; Bu, X. H. N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy 2017, 40, 462–470.CrossRefGoogle Scholar
  30. [30]
    Singh, D. K.; Jenjeti, R. N.; Sampath, S.; Eswaramoorthy, M. Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 6025–6031.CrossRefGoogle Scholar
  31. [31]
    Li, X. C.; Zhang, L.; He, G. H. Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon 2016, 99, 514–522.CrossRefGoogle Scholar
  32. [32]
    Huang, J.; Cheng, S. P.; Chen, Y. X.; Chen, Z. L.; Luo, H.; Xia, X. H.; Liu, H. B. High-rate capability and long-term cycling of self-assembled hierarchical Fe3O4/carbon hollow spheres through interfacial control. J. Mater. Chem. A 2019, 7, 16720–16727.CrossRefGoogle Scholar
  33. [33]
    Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Wang, C.; Ma, T. L. Nanowire-templated synthesis of FeNx-decorated carbon nanotubes as highly efficient, universal-pH, oxygen reduction reaction catalysts. Chem.-Eur. J. 2019, 25, 2637–2644.CrossRefGoogle Scholar
  34. [34]
    Pan, J.; Song, S. Y.; Li, J. Q.; Wang, F.; Ge, X.; Yao, S.; Wang, X.; Zhang, H. J. Solid ion transition route to 3D S-N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions. Nano Res. 2017, 10, 3486–3495.CrossRefGoogle Scholar
  35. [35]
    Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Wang, C.; Liu, A. M.; Ma, T. L. Killing two birds with one stone: A highly active tubular carbon catalyst with effective N doping for oxygen reduction and hydrogen evolution reactions. Catal. Lett. 2019, 149, 486–495.CrossRefGoogle Scholar
  36. [36]
    Wang, T. H.; Tan, S. X.; Liang, C. H. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon 2009, 47, 1880–1883.CrossRefGoogle Scholar
  37. [37]
    He, X. J.; Ling, P. H.; Yu, M. X.; Wang, X. T.; Zhang, X. Y.; Zheng, M. D. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 2013, 105, 635–641.CrossRefGoogle Scholar
  38. [38]
    Gadipelli, S.; Zhao, T. T.; Shevlin, S. A.; Guo, Z. X. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci. 2016, 9, 1661–1667.CrossRefGoogle Scholar
  39. [39]
    You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.CrossRefGoogle Scholar
  40. [40]
    Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.CrossRefGoogle Scholar
  41. [41]
    Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857.CrossRefGoogle Scholar
  42. [42]
    Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.CrossRefGoogle Scholar
  43. [43]
    Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.CrossRefGoogle Scholar
  44. [44]
    Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.CrossRefGoogle Scholar
  45. [45]
    Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W. In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater. 2017, 29, 1604456.CrossRefGoogle Scholar
  46. [46]
    Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904–8912.CrossRefGoogle Scholar
  47. [47]
    Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287.CrossRefGoogle Scholar
  48. [48]
    Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar
  49. [49]
    Zhang, J.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Guo, S. J. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.CrossRefGoogle Scholar
  50. [50]
    Wei, Q. L.; Yang, X. H.; Zhang, G. X.; Wang, D. N.; Zuin, L.; Banham, D.; Yang, L. J.; Ye, S. Y.; Wang, Y. L.; Mohamedi, M. et al. An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Appl. Catal. B: Environ. 2018, 237, 85–93.CrossRefGoogle Scholar
  51. [51]
    Xu, P.; Zhang, J.; Jiang, G. P.; Hassan, F.; Choi, J. Y.; Fu, X. G.; Zamani, P.; Yang, L. J.; Banham, D.; Ye, S. Y. et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy 2018, 51, 745–753.CrossRefGoogle Scholar
  52. [52]
    Wu, Z. X.; Liu, R.; Wang, J.; Zhu, J.; Xiao, W. P.; Xuan, C. J.; Lei, W.; Wang, D. L. Nitrogen and sulfur Co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale 2016, 8, 19086–19092.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical EngineeringDalian University of Technology, Panjin CampusPanjinChina
  2. 2.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyFukuokaJapan
  3. 3.Center for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhouChina

Personalised recommendations