Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction

  • Dahui Fang
  • Lei Wan
  • Qike Jiang
  • Hongjie Zhang
  • Xuejun Tang
  • Xiaoping Qin
  • Zhigang ShaoEmail author
  • Zidong WeiEmail author
Research Article


Bimetallic platinum-copper (Pt-Cu) alloy nanowires have emerged as a novel class of fuel cell electrocatalysts for oxygen reduction reaction (ORR) due to their intrinsic high catalytic activity and durability, but preparing such electrocatalysts with clean surface via facile method is still a challenge. Herein, PtCu alloy with nanowire networks (NWNs) structure is obtained by a simple modified polyol method accompanied with a salt-mediated self-assembly process in a water/ethylene glycol (EG) mixing media. The formation mechanism of PtCu NWNs including the morphological evolution and the relevant experimental parameters has been investigated systematically. We propose that a micro-interface in H2O-EG media formed with the assistance of disodium dihydrogen pyrophosphate (Na2H2P2O7) and its unique nature of coordinating with Pt2+ or Cu2+ play critical roles in the formation of NWNs. When tested as ORR catalyst, the PtCuNWNs/C exhibits much higher activity and durability than that of PtNWNs/C and commercial Pt/C, even exceeding the target of DOE in 2020. The excellent performance of PtCuNWNs/C could be attributed to the unique structure of NWNs with 2.4 nm ultrathin wavy nanowires and plentiful surface defects and the modified electronic effect caused by alloying with Cu atoms.


PtCu nanoalloy nanowire networks surface defect self-assembly oxygen reduction reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Major Research Project (No. 2018YFB0105601), the National Natural Science Foundation of China (No. 21576257), the Natural Science Foundation-Liaoning United Fund (No. U1508202), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB06050303).

Supplementary material

12274_2019_2511_MOESM1_ESM.pdf (3.6 mb)
Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction


  1. [1]
    Anahara, R.; Yokokawa, S.; Sakurai, M. Present status and future prospects for fuel cell power systems. Proc. IEEE 1993, 81, 399–408.CrossRefGoogle Scholar
  2. [2]
    Wang, X. X.; Prabhakaran, V.; He, Y. H.; Shao, Y. Y.; Wu, G. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: Cobalt catalysts and the peroxide mitigation approach. Adv. Mater. 2019, 31, 1805126.CrossRefGoogle Scholar
  3. [3]
    Li, B.; Wang, J.; Gao, X.; Qin, C. W.; Yang, D. J.; Lv, H.; Xiao, Q. F.; Zhang, C. M. High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Res. 2019, 12, 281–287.CrossRefGoogle Scholar
  4. [4]
    Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825.CrossRefGoogle Scholar
  5. [5]
    Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 2019, 31, 1804846.CrossRefGoogle Scholar
  6. [6]
    Bao, M. J.; Amiinu, I. S.; Peng, T.; Li, W. Q.; Liu, S. J.; Wang, Z.; Pu, Z. H.; He, D. P.; Xiong, Y. L.; Mu, S. C. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 2018, 3, 940–945.CrossRefGoogle Scholar
  7. [7]
    Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, L.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.CrossRefGoogle Scholar
  8. [8]
    Zhang, G. R.; Wöllner, S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Appl. Catal. B: Environ. 2018, 222, 26–34.CrossRefGoogle Scholar
  9. [9]
    Zeng, Y. C.; Shao, Z. G.; Zhang, H. J.; Wang, Z. Q.; Hong, S. J.; Yu, H. M.; Yi, B. L. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 2017, 34, 344–355.CrossRefGoogle Scholar
  10. [10]
    Cheng, D. J.; Qiu, X. G.; Yu, H. Y. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying. Phys. Chem. Chem. Phys. 2014, 16, 20377–20381.CrossRefGoogle Scholar
  11. [11]
    Wang, C.; Chi, M. F.; Li, D. G.; Van Der Vliet, D.; Wang, G. F.; Lin, Q. Y.; Mitchell, J. F.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catal. 2011, 1, 1355–1359.CrossRefGoogle Scholar
  12. [12]
    Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.CrossRefGoogle Scholar
  13. [13]
    Li, C. Z.; Liu, T. Y.; He, T.; Ni, B.; Yuan, Q.; Wang, X. Compositiondriven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale 2018, 10, 4670–4674.CrossRefGoogle Scholar
  14. [14]
    Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.CrossRefGoogle Scholar
  15. [15]
    Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65–71.CrossRefGoogle Scholar
  16. [16]
    Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.CrossRefGoogle Scholar
  17. [17]
    Hong, J. W.; Kang, S. W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S. W. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419.CrossRefGoogle Scholar
  18. [18]
    Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y. Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.CrossRefGoogle Scholar
  19. [19]
    Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572.CrossRefGoogle Scholar
  20. [20]
    Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.CrossRefGoogle Scholar
  21. [21]
    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.CrossRefGoogle Scholar
  22. [22]
    Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.CrossRefGoogle Scholar
  23. [23]
    Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.CrossRefGoogle Scholar
  24. [24]
    Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.CrossRefGoogle Scholar
  25. [25]
    Song, P. P.; Cui, X. N.; Shao, Q.; Feng, Y. G.; Zhu, X.; Huang, X. Q. Networked Pt-Sn nanowires as efficient catalysts for alcohol electrooxidation. J. Mater. Chem. A 2017, 5, 24626–24630.CrossRefGoogle Scholar
  26. [26]
    Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.CrossRefGoogle Scholar
  27. [27]
    Wang, P.; Zhang, Y. Y.; Shi, R.; Wang, Z. H. Trimetallic PtPdCu nanowires as an electrocatalyst for methanol and formic acid oxidation. New J. Chem. 2018, 42, 19083–19089.CrossRefGoogle Scholar
  28. [28]
    Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.CrossRefGoogle Scholar
  29. [29]
    Yan, X. X.; Chen, Y. F.; Deng, S. H.; Yang, Y. F.; Huang, Z. N.; Ge, C. W.; Xu, L.; Sun, D. M.; Fu, G. T.; Tang, Y. W. In situ integration of ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chem. -Eur. J. 2017, 23, 16871–16876.CrossRefGoogle Scholar
  30. [30]
    Ying, J.; Jiang, G. P.; Cano, Z. P.; Ma, Z.; Chen, Z. W. Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2018, 236, 359–367.CrossRefGoogle Scholar
  31. [31]
    Quinson, J.; Inaba, M.; Neumann, S.; Swane, A. A.; Bucher, J.; Simonsen, S. B.; Kuhn, L. T.; Kirkensgaard, J. J. K.; Jensen, K. M. Ø.; Oezaslan, M. et al. Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: Case study of the oxygen reduction reaction on Pt. ACS Catal. 2018, 8, 6627–6635.CrossRefGoogle Scholar
  32. [32]
    Taufany, F.; Pan, C. J.; Chou, H. L.; Rick, J.; Chen, Y. S.; Liu, D. G.; Lee, J. F.; Tang, M. T.; Hwang, B. J. Relating structural aspects of bimetallic Pt3Cr1/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction. Chem. -Eur. J. 2011, 17, 10724–10735.CrossRefGoogle Scholar
  33. [33]
    Li, W. Q.; Xiong, Y. L.; Wang, Z.; Bao, M.J.; Liu, J.; He, D. P.; Mu, S. C. Seed-mediated synthesis of large-diameter ternary TePtCo nanotubes for enhanced oxygen reduction reaction. Appl. Catal. B: Environ. 2018, 231, 277–282.CrossRefGoogle Scholar
  34. [34]
    He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.CrossRefGoogle Scholar
  35. [35]
    Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.CrossRefGoogle Scholar
  36. [36]
    Fang, D. H.; Zhang, H. J.; He, L.; Geng, J. T.; Song, W.; Sun, S. C.; Shao, Z. G.; Yi, B. L. Facile synthesis of nanoporous Pt-encapsulated Ir black as a bifunctional oxygen catalyst via modified polyol process at room temperature. ChemElectroChem, 2019, 6, 3633–3643.CrossRefGoogle Scholar
  37. [37]
    Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328.CrossRefGoogle Scholar
  38. [38]
    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.CrossRefGoogle Scholar
  39. [39]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  40. [40]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  41. [41]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.CrossRefGoogle Scholar
  42. [42]
    Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  43. [43]
    Cao, J. Y.; Du, Y. Y.; Dong, M. M.; Chen, Z. D.; Xu, J. Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J. Alloys Compd. 2018, 747, 124–130.CrossRefGoogle Scholar
  44. [44]
    Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 2011, 133, 9674–9677.CrossRefGoogle Scholar
  45. [45]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 126, 12730–12735.CrossRefGoogle Scholar
  46. [46]
    Chaudhari, N. K.; Joo, J.; Kwon, H. B.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 2018, 11, 6111–6140.CrossRefGoogle Scholar
  47. [47]
    Xiao, M. L.; Li, S. T., Zhao, X.; Zhu, J. B.; Yin, M.; Liu, C. P.; Xing, W. Enhanced catalytic performance of composition-tunable PtCu nanowire networks for methanol electrooxidation. ChemCatChem 2014, 6, 2825–2831.CrossRefGoogle Scholar
  48. [48]
    Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751–1756.CrossRefGoogle Scholar
  49. [49]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  50. [50]
    Chen, B.; Cheng, D. J.; Zhu, J. Q. Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction. J. Power Sources 2014, 267, 380–387.CrossRefGoogle Scholar
  51. [51]
    Yang, J. H.; Chen, X. J.; Yang, X. F.; Ying, J. Y. Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 8976–8981.CrossRefGoogle Scholar
  52. [52]
    Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.CrossRefGoogle Scholar
  53. [53]
    Zhang, L.; Choi, S. I.; Tao, J.; Peng, H. C.; Xie, S. F.; Zhu, Y. M.; Xie, Z. X.; Xia, Y. N. Pd-Cu bimetallic tripods: A mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 2014, 24, 7520–7529.CrossRefGoogle Scholar
  54. [54]
    Ud Din, M. A.; Saleem, F.; Zulfiqar, M.; Wang, X. Synthesis of selfassembled PtPdAg nanostructures with a high catalytic activity for oxygen reduction reactions. Nanoscale 2018, 10, 17140–17147.CrossRefGoogle Scholar
  55. [55]
    Zuo, Y. P.; Li, T. T.; Ren, H.; Zhu, G. L.; Han, K.; Zhuang, L.; Han, H. Y. Self-assembly of Pt-based truncated octahedral crystals into metal-frameworks towards enhanced electrocatalytic activity. J. Mater. Chem. A 2016, 4, 15169–15180.CrossRefGoogle Scholar
  56. [56]
    Zhang, G.; Shao, Z. G.; Lu, W. T.; Xie, F.; Xiao, H.; Qin, X. P.; Yi, B. L. Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs. Appl. Catal. B: Environ. 2013, 132-133, 183–194.CrossRefGoogle Scholar
  57. [57]
    Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485–5491.CrossRefGoogle Scholar
  58. [58]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  59. [59]
    Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127, 12480–12481.CrossRefGoogle Scholar
  60. [60]
    Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem., Int. Ed. 2011, 50, 422–426.CrossRefGoogle Scholar
  61. [61]
    Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.CrossRefGoogle Scholar
  62. [62]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dahui Fang
    • 1
    • 2
  • Lei Wan
    • 3
  • Qike Jiang
    • 4
  • Hongjie Zhang
    • 1
  • Xuejun Tang
    • 1
    • 2
  • Xiaoping Qin
    • 1
  • Zhigang Shao
    • 1
    Email author
  • Zidong Wei
    • 5
    Email author
  1. 1.Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.The State Key Laboratory of Chemical Engineering, Department of Chemical EngineeringTsinghua UniversityBeijingChina
  4. 4.Advanced Electron Microscopy Research Group, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  5. 5.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina

Personalised recommendations