Advertisement

Nano Research

, Volume 12, Issue 11, pp 2760–2765 | Cite as

Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier

  • Nan Hu
  • Xiaoli ShiEmail author
  • Qiang Zhang
  • Wentao Liu
  • Yuting Zhu
  • Yuqing Wang
  • Yi Hou
  • Yinglu Ji
  • Yupeng Cao
  • Qian Zeng
  • Zhuo Ao
  • Quanmei Sun
  • Xiaohan Zhou
  • Xiaochun Wu
  • Dong HanEmail author
Research Article
  • 36 Downloads

Abstract

Nowadays, nanoparticles (NPs) are considered to be ideal tools for bioimaging and drug delivery. Although increasing research has focused on NP biodistribution, transportation in the interstitial architecture has been neglected. The entire body is connected by the interstitial architecture, which can provide a long-range and direct pathway for NP biodistribution in a nonvascular system. In this study, we report that 10-nm gold NPs injected directly into the interstitial architecture of the tarsal tunnel of rats (intervaginal space injection (ISI)) were delivered to the brain without crossing the blood-brain barrier. Furthermore, NaGdF4 nanoparticles were used to explore the transportation route by magnetic resonance imaging. The results demonstrated that, after ISI, the NaGdF4 nanoparticles were transported through the perivascular interstitial space of the carotid arteries and brain vessels to the brain. This is a special nonvascular transportation route like a stream based on the interstitial architecture that provides an alternative pathway for NP biodistribution.

KeyWords

nanoparticles interstitial stream mass transportation blood-brain barrier magnetic resonance imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Chinese Academy of Sciences (No. ZDKYYQ20190002)

Supplementary material

12274_2019_2510_MOESM1_ESM.avi (11.6 mb)
Supplementary material, approximately 11.5 MB.
12274_2019_2510_MOESM2_ESM.pdf (1.7 mb)
Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier

References

  1. [1]
    Dreaden, E. C.; Mackey, M. A.; Huang, X. H.; Kang, B.; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391–3404.CrossRefGoogle Scholar
  2. [2]
    Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 2008, 41, 1742–1749.CrossRefGoogle Scholar
  3. [3]
    Wijtmans, M.; Rosenthal, S. J.; Zwanenburg, B.; Porter, N. A. Visible light excitation of CdSe nanocrystals triggers the release of coumarin from cinnamate surface ligands. J. Am. Chem. Soc. 2006, 128, 11720–11726.CrossRefGoogle Scholar
  4. [4]
    Wang, Y. H.; Song, S. Y.; Liu, J. H.; Liu, D. P.; Zhang, H. J. ZnO-functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew. Chem., Int. Ed. 2015, 54, 536–540.Google Scholar
  5. [5]
    Khlebtsov, N.; Dyrkman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.CrossRefGoogle Scholar
  6. [6]
    Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 2008, 66, 274–280.CrossRefGoogle Scholar
  7. [7]
    De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912–1919.CrossRefGoogle Scholar
  8. [8]
    Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280–3294.CrossRefGoogle Scholar
  9. [9]
    Iliff, J. J.; Wang, M. H.; Liao, Y. H.; Plogg, B. A.; Peng, W. G.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R., Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111.CrossRefGoogle Scholar
  10. [10]
    Morris, A. W. J.; Sharp, M. M.; Albargothy, N. J.; Fernandes, R.; Hawkes, C. A.; Verma, A.; Weller, R. O.; Carare, R. O. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016, 131, 725–736.CrossRefGoogle Scholar
  11. [11]
    Jessen, N. A.; Munk, A. S. F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner’s guide. Neurochem. Res. 2015, 40, 2583–2599.CrossRefGoogle Scholar
  12. [12]
    Venkatesh, B.; Morgan, T. J.; Cohen, J. Interstitium: The next diagnostic and therapeutic platform in critical illness. Crit. Care Med. 2010, 38, S630–S636.CrossRefGoogle Scholar
  13. [13]
    Swartz, M. A.; Fleury, M. E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 2007, 9, 229–256.CrossRefGoogle Scholar
  14. [14]
    Shi, X. L.; Zhu, Y. T.; Hua, W. D.; Ji, Y. L.; Ha, Q.; Han, X. X.; Liu, Y.; Gao, J. W.; Zhang, Q.; Liu, S. D. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 2016, 9, 2097–2109.CrossRefGoogle Scholar
  15. [15]
    Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.CrossRefGoogle Scholar
  16. [16]
    Yang, Y.; Rosenberg, G. A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011, 42, 3323–3328.CrossRefGoogle Scholar
  17. [17]
    Li, H. Y.; Yang, C. Q.; Lu, K. Y.; Zhang, L. Y.; Yang, J. F.; Wang, F.; Liu, D. G.; Cui, D.; Sun, M. J.; Pang, J. X. et al. A long-distance fluid transport pathway within fibrous connective tissues in patients with ankle edema. Clin. Hemorheol. Microcirc. 2016, 63, 411–421.CrossRefGoogle Scholar
  18. [18]
    Hu, N.; Cao, Y. P.; Ao, Z.; Han, X. X.; Zhang, Q.; Liu, W. T.; Liu, S. D.; Liao, F. L.; Han, D. Flow behavior of liquid metal in the connected fascial space: Intervaginal space injection in the rat wrist and mice with tumor. Nano Res. 2018, 11, 2265–2276.CrossRefGoogle Scholar
  19. [19]
    Feng, J. T.; Wang, F.; Han, X. X.; Ao, Z.; Sun, Q. M.; Hua, W. D.; Chen, P. P.; Jing, T. W.; Li, H. Y.; Han, D. A “green pathway” different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434–442.CrossRefGoogle Scholar
  20. [20]
    Han, X. X.; Li, H. Y.; Hua, W. D.; Dai, L. R.; Ao, Z.; Liao, F. L.; Han, D. Fluid in the tissue channels of vascular adventitia investigated by AFM and TEM. Clin. Hemorheol. Microcirc. 2017, 67, 173–182.CrossRefGoogle Scholar
  21. [21]
    Kulik, T.; Kusano, Y.; Aronhime, S.; Sandler, A. L.; Winn, H. R. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008, 55, 281–288.CrossRefGoogle Scholar
  22. [22]
    Zhang, E. T.; Inman, C. B.; Weller, R. O. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J. Anat. 1990, 170, 111–123.Google Scholar
  23. [23]
    Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J. et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172–1178.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nan Hu
    • 1
    • 2
    • 3
  • Xiaoli Shi
    • 1
    • 2
    Email author
  • Qiang Zhang
    • 1
    • 2
  • Wentao Liu
    • 1
    • 2
  • Yuting Zhu
    • 1
    • 2
  • Yuqing Wang
    • 1
    • 2
  • Yi Hou
    • 4
  • Yinglu Ji
    • 1
  • Yupeng Cao
    • 1
    • 2
  • Qian Zeng
    • 1
    • 2
  • Zhuo Ao
    • 1
    • 2
  • Quanmei Sun
    • 1
    • 2
  • Xiaohan Zhou
    • 1
    • 2
  • Xiaochun Wu
    • 1
  • Dong Han
    • 1
    • 2
    Email author
  1. 1.CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Traditional Chinese MedicineChengde Medical UniversityChengdeChina
  4. 4.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations