Advertisement

Nano Research

, Volume 12, Issue 11, pp 2749–2759 | Cite as

Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4

  • Qian Li
  • Songcan Wang
  • Zhuxing Sun
  • Qijun Tang
  • Yiqiu Liu
  • Lianzhou WangEmail author
  • Haiqiang WangEmail author
  • Zhongbiao Wu
Research Article
  • 80 Downloads

Abstract

Graphitic carbon nitride (g-C3N4, CN) exhibits inefficient charge separation, deficient CO2 adsorption and activation sites, and sluggish surface reaction kinetics, which have been recognized as the main barriers to its application in CO2 photocatalytic reduction. In this work, carbon quantum dot (CQD) decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method. The incorporated CQDs not only facilitate charge transfer and separation, but also provide alternative CO2 adsorption and activation sites. Further, the oxygen-atom-doped CN (OCN), in which oxygen doping is accompanied by the formation of nitrogen defects, proves to be a sustainable H+ provider by facilitating the water dissociation and oxidation half-reactions. Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials, the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x (x represents the volume ratio of laboratory-used H2O2 (30 wt.%) in the mixed solution) is dramatically improved by 11 times at least. The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity.

Keywords

photocatalytic CO2 reduction graphitic carbon nitride (g-C3N4carbon quantum dot oxygen doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (No. 51578488), Zhejiang Provincial “151” Talents Program, the Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07) and Changjiang Scholar Incentive Program (Ministry of Education, China, 2009).

Supplementary material

12274_2019_2509_MOESM1_ESM.pdf (3 mb)
Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4

References

  1. [1]
    Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci.2012, 5, 6732–6743.Google Scholar
  2. [2]
    Xie, S. J.; Zhang, Q. H.; Liu, G. D.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun.2016, 52, 35–59.Google Scholar
  3. [3]
    Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci.2016, 9, 2177–2196.Google Scholar
  4. [4]
    Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature1979, 277, 637–638.Google Scholar
  5. [5]
    Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed.2013, 52, 7372–7408.Google Scholar
  6. [6]
    Zhou, H.; Yan, R. Y.; Zhang, D.; Fan, T. X. Challenges and perspectives in designing artificial photosynthetic systems. Chem.-Eur. J.2016, 22, 9870–9885.Google Scholar
  7. [7]
    Lu, L.; Wang, B.; Wang, S. M.; Shi, Z.; Yan, S. C.; Zou, Z. G. La2O3-modified LaTiO2N photocatalyst with spatially separated active sites achieving enhanced CO2 reduction. Adv. Funct. Mater.2017, 27, 1702447.Google Scholar
  8. [8]
    White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev.2015, 115, 12888–12935.Google Scholar
  9. [9]
    Sun, Z. X.; Wang, S. C.; Li, Q.; Lyu, M. Q.; Butburee, T.; Luo, B.; Wang, H. Q.; Fischer, J. M. T. A.; Zhang, C.; Wu, Z. B. et al. Enriching CO2 activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO2-to-fuel conversion. Adv. Sustain. Syst.2017, 1, 1700003.Google Scholar
  10. [10]
    Li, M. L.; Zhang, L. X.; Wu, M. Y.; Du, Y. Y.; Fan, X. Q.; Wang, M.; Zhang, L. L.; Kong, Q. L.; Shi, J. L. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy2016, 19, 145–155.Google Scholar
  11. [11]
    Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater.2017, 29, 1601694.Google Scholar
  12. [12]
    Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev.2014, 43, 5234–5244.Google Scholar
  13. [13]
    Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces2013, 5, 11392–11401.Google Scholar
  14. [14]
    Zhang, H.; Zhao, L. X.; Geng, F. L.; Guo, L. H.; Wan, B.; Yang, Y. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal. B: Environ.2016, 180, 656–662.Google Scholar
  15. [15]
    Low, J. X.; Cheng, B.; Yu, J. G.; Jaroniec, M. Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels. Energy Stor. Mater.2016, 3, 24–35.Google Scholar
  16. [16]
    Huang, Y.; Liang, Y. L.; Rao, Y. F.; Zhu, D. D.; Cao, J. J.; Shen, Z. X.; Ho, W; Lee, S. C. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: Characterization, biocompatibility, and mechanisms for NO removal. Environ. Sci. Technol.2017, 51, 2924–2933.Google Scholar
  17. [17]
    Chen, J. W.; Shi, J. W.; Wang, X.; Cui, H. J.; Fu, M. L. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chin. J. Catal.2013, 34, 621–640.Google Scholar
  18. [18]
    Yu, J. G.; Jin, J.; Cheng, B.; Jaroniec, M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A2014, 2, 3407–3416.Google Scholar
  19. [19]
    Liu, G.; Niu, P.; Sun, C. H.; Smith, S.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc.2010, 132, 11642–11648.Google Scholar
  20. [20]
    Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces2015, 7, 16850–16856.Google Scholar
  21. [21]
    Zeng, Y. X.; Liu, X.; Liu, C. B.; Wang, L. L.; Xia, Y. C.; Zhang, S. Q.; Luo, S. L.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B: Environ.2018, 224, 1–9.Google Scholar
  22. [22]
    Fang, W. J.; Liu, J. Y.; Yu, L.; Jiang, Z.; Shangguan, W. F. Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Appl. Catal. B: Environ.2017, 209, 631–636.Google Scholar
  23. [23]
    Jiang, Y. B.; Sun, Z. Z.; Tang, C.; Zhou, Y. X.; Zeng, L.; Huang, L. M. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Appl. Catal. B: Environ.2019, 240, 30–38.Google Scholar
  24. [24]
    Wang, X. F.; Cheng, J. J.; Yu, H. G.; Yu, J. G. A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance. Dalton Trans.2017, 46, 6417–6424.Google Scholar
  25. [25]
    Li, Q.; Sun, Z. X.; Wang, H. Q.; Wu, Z. B. Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured Bi-decorated g-C3N4 nanohybrid under visible-light irradiation. J. CO 2Util.2018, 28, 126–136.Google Scholar
  26. [26]
    Wang, H. Q.; Sun, Z. X.; Li, Q.; Tang, Q. J.; Wu, Z. B. Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200.420 nm UV light. J. CO 2Util.2016, 14, 143–151.Google Scholar
  27. [27]
    Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem.2008, 18, 4893–4908.Google Scholar
  28. [28]
    Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater.2015, 27, 4572–4577.Google Scholar
  29. [29]
    Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small2017, 13, 1603938.Google Scholar
  30. [30]
    Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, H. M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater.2016, 28, 6471–6477.Google Scholar
  31. [31]
    Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater.2012, 22, 4763–4770.Google Scholar
  32. [32]
    Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. J.; Mi, W. B.; Zhang, X. W.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy2015, 12, 646–656.Google Scholar
  33. [33]
    Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem.2012, 22, 1265–1269.Google Scholar
  34. [34]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as highperformance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed.2014, 53, 7281–7285.Google Scholar
  35. [35]
    Hu, Y. P.; Yang, J.; Jia, L.; Yu, J. S. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon2015, 93, 999–1007.Google Scholar
  36. [36]
    Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: A novel insight into carbon dot optical properties. Nanoscale2013, 5, 2655–2658.Google Scholar
  37. [37]
    Hu, S. L.; Tian, R. X.; Wu, L. L.; Zhao, Q.; Yang, J. L.; Liu, J.; Cao, S. R. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity. Chem..Asian J.2013, 8, 1035–1041.Google Scholar
  38. [38]
    Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visiblelight photoreactivity. Chem. Commun.2012, 48, 12017–12019.Google Scholar
  39. [39]
    She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B: Environ.2016, 187, 144–153.Google Scholar
  40. [40]
    Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem.2011, 21, 14398–14401.Google Scholar
  41. [41]
    Qiu, P. X.; Xu, C. M.; Chen, H.; Jiang, F.; Wang, X.; Lu, R. F.; Zhang, X. R. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. Appl. Catal. B: Environ.2017, 206, 319–327.Google Scholar
  42. [42]
    Bu, Y. Y.; Chen, Z. Y. Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim. Acta2014, 144, 42–49.Google Scholar
  43. [43]
    Li, H. J.; Sun, B. W.; Sui, L.; Qian, D. J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys.2015, 17, 3309–3315.Google Scholar
  44. [44]
    Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon2009, 47, 145–152.Google Scholar
  45. [45]
    Wang, X. P.; Chen, Y. X.; Fu, M.; Chen, Z. H.; Huang, Q. L. Effect of high-voltage discharge non-thermal plasma on g-C3N4 in a plasmaphotocatalyst system. Chin. J. Catal.2018, 39, 1672–1682.Google Scholar
  46. [46]
    Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed.2010, 49, 4430–4434.Google Scholar
  47. [47]
    Fusco, C.; Casiello, M.; Catucci, L.; Comparelli, R.; Cotugno, P.; Falcicchio, A.; Fracassi, F.; Margiotta, V.; Moliterni, A.; Petronella, F. et al. TiO2@PEI-grafted-MWCNTs hybrids nanocomposites catalysts for CO2 photoreduction. Materials2018, 11, 307.Google Scholar
  48. [48]
    Ou, H. H.; Yang, P. J.; Lin, L. H.; Anpo, M.; Wang, X. C. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem., Int. Ed.2017, 56, 10905–10910.Google Scholar
  49. [49]
    Szanyi, J.; Kwak, J. H. Dissecting the steps of CO2 reduction: 1. The interaction of CO and CO2 with γ-Al2O3: An in situ FTIR study. Phys. Chem. Chem. Phys.2014, 16, 15117–15125.Google Scholar
  50. [50]
    Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. B.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res.2018, 11, 2450–2459.Google Scholar
  51. [51]
    Li, X. C.; Wu, M.; Lai, Z. H.; He, F. Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl. Catal. A: Gen.2005, 290, 81–86.Google Scholar
  52. [52]
    Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy2015, 13, 757–770.Google Scholar
  53. [53]
    Zhao, Y. L.; Wei, Y. C.; Wu, X. X.; Zheng, H. L.; Zhao, Z.; Liu, J.; Li, J. M. Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B: Environ.2018, 226, 360–372.Google Scholar
  54. [54]
    Tang, Q. J.; Sun, Z. X.; Wang, P. L.; Li, Q.; Wang, H. Q.; Wu, Z. B. Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Appl. Surf. Sci.2019, 463, 456–462.Google Scholar
  55. [55]
    Peng, Y. H.; Wang, L. B.; Luo, Q. Q.; Cao, Y.; Dai, Y. Z.; Li, Z. L.; Li, H. L.; Zheng, X. S.; Yan, W. S.; Yang, J. L. et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem2018, 4, 613–625.Google Scholar
  56. [56]
    Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater.2016, 6, 1601273.Google Scholar
  57. [57]
    Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ.2016, 185, 225–232.Google Scholar
  58. [58]
    Delgado, E. R.; Alves, L. A.; Verly, R. M.; De Lemos, L. R.; De Mesquita, J. P. Purification, selection, and partition coefficient of highly oxidized carbon dots in aqueous two-phase systems based on polymer-salt pairs. Langmuir2017, 33, 12235–12243.Google Scholar
  59. [59]
    Hong, Y. Z.; Shi, J. Y.; Shi, W. D.; Fang, Z. Y.; Chen, R. J.; Huang, Y. Y. A facile and scalable route for synthesizing ultrathin carbon nitride nanosheets with efficient solar hydrogen evolution. Carbon2018, 136, 160–167.Google Scholar
  60. [60]
    Wu, P.; Wang, J. R.; Zhao, J.; Guo, L. J.; Osterloh, F. E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A2014, 2, 20338–20344.Google Scholar
  61. [61]
    Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ.2017, 218, 515–524.Google Scholar
  62. [62]
    Li, Q.; Gao, S.; Hu, J.; Wang, H. Q.; Wu, Z. B. Superior NOx photocatalytic removal over hybrid hierarchical Bi/BiOI with high non-NO2 selectivity: Synergistic effect of oxygen vacancies and bismuth nanoparticles. Catal. Sci. Technol.2018, 8, 5270–5279.Google Scholar
  63. [63]
    Zhao, H. X.; Chen, X. Y.; Li, X. T.; Shen, C.; Qu, B. C.; Gao, J. S.; Chen, J. W.; Quan, X. Photoinduced formation of reactive oxygen species and electrons from metal oxide-silica nanocomposite: An EPR spin-trapping study. Appl. Surf. Sci.2017, 416, 281–287.Google Scholar
  64. [64]
    Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces2016, 8, 23133–23142.Google Scholar
  65. [65]
    Putri, L. K.; Ng, B. J.; Ong, W. J.; Lee, H. W.; Chang, W. S.; Chai, S. P. Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A2018, 6, 3181–3194.Google Scholar
  66. [66]
    Wu, J. C. S. Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal. Surv. Asia2009, 13, 30–40.Google Scholar
  67. [67]
    Xie, T. P.; Liu, Y.; Wang, H. Q.; Wu, Z. B. Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst. Appl. Surf. Sci.2018, 444, 320–329.Google Scholar
  68. [68]
    Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc.2011, 133, 3964–3971.Google Scholar
  69. [69]
    Rajalakshmi, K.; Jeyalakshmi, V.; Krishnamurthy, K. R.; Viswanathan, B. Photocatalytic reduction of carbon dioxide by water on titania: Role of photophysical and structural properties. Indian J. Chem.2012, 51A, 411–419.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qian Li
    • 1
    • 2
  • Songcan Wang
    • 3
  • Zhuxing Sun
    • 4
  • Qijun Tang
    • 1
    • 2
  • Yiqiu Liu
    • 1
    • 2
  • Lianzhou Wang
    • 3
    Email author
  • Haiqiang Wang
    • 1
    • 2
    Email author
  • Zhongbiao Wu
    • 1
    • 2
  1. 1.Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources ScienceZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution ControlHangzhouChina
  3. 3.Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  4. 4.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations