Advertisement

Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries

  • Liang ChenEmail author
  • Weiwei Yang
  • Jianguo Liu
  • Yong Zhou
Research Article

Abstract

Although lithium-sulfur batteries are one of promising rechargeable energy storage devices, their wide applications are impeded by the lithium polysulfides shuttle effect, low electronic conductivity of the cathode, and sluggish redox reaction kinetics of lithium polysulfides. In this work, reduced graphene oxide was decorated with CoSe2 hollow nanospheres to form an RGO-CoSe2 composite that was used as a host material to support S in the cathode. The RGO-CoSe2 composite has the following superiorities: (1) enhanced electronic conductivity, (2) accommodation of the volumetric change of cathode materials, (3) effective confinement of numerous lithium polysulfides species due to chemisorption, (4) expedition of the redox kinetics of lithium polysulfides. As expected, the RGO-CoSe2-based cathode exhibited the reversible specific capacity of 1,044.7 mAh/g at 0.2C and 695.7 mAh/g at 2C, together with excellent cycling stability of 0.071% average capacity decay per cycle over 400 cycles at 1C.

Keywords

cobalt selenide hollow nanospheres chemisorption lithium-sulfur batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 51802029), Natural Science Foundation of Hunan Province, China (No. 2017JJ3343), Scientific Research Fund of Hunan Provincial Education Department (No. 17B028), Project of Changsha bureau of science and technology (No. k1705062), and Scientific Research for The Introduction of Talents of Changsha University (No. SF1606).

Supplementary material

12274_2019_2508_MOESM1_ESM.pdf (2.2 mb)
Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries

References

  1. [1]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  2. [2]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  3. [3]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  4. [4]
    Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO-VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.CrossRefGoogle Scholar
  5. [5]
    Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li-S battery cells. Adv. Energy Mater. 2015, 5, 1500118.CrossRefGoogle Scholar
  6. [6]
    Rao, M. M.; Geng, X. Y.; Li, X. P.; Hu, S. J.; Li, W. S. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte. J. Power Sources 2012, 212, 179–185.CrossRefGoogle Scholar
  7. [7]
    Fan, L.; Zhuang, H. L.; Zhang, K. H.; Cooper, V. R.; Li, Q.; Lu, Y. Y. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1600175.CrossRefGoogle Scholar
  8. [8]
    Li, X. P.; Pan, Z. H.; Li, Z. H.; Wang, X. S.; Saravanakumar, B.; Zhong, Y. T.; Xing, L. D.; Xu, M. Q.; Guo, C. L.; Li, W. S. Coral-like reduced graphene oxide/tungsten sulfide hybrid as a cathode host of high performance lithium-sulfur battery. J. Power Sources 2019, 420, 22–28.CrossRefGoogle Scholar
  9. [9]
    Li, Z.; Zhang, S. G.; Zhang, J. H.; Xu, M.; Tatara, R.; Dokko, K.; Watanabe, M. Three-dimensionally hierarchical Ni/Ni3S2/S cathode for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2017, 9, 38477–38485.CrossRefGoogle Scholar
  10. [10]
    Scheers, J.; Fantini, S.; Johansson, P. A review of electrolytes for lithium-sulphur batteries. J. Power Sources 2014, 255, 204–218.CrossRefGoogle Scholar
  11. [11]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  12. [12]
    Do, V.; Deepika; Kim, M. S.; Kim, M. S.; Lee, K. R.; Cho, W. I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 11431–11441.CrossRefGoogle Scholar
  13. [13]
    Wang, S. Z.; Chen, H. Y.; Liao, J. X.; Sun, Q.; Zhao, F. P.; Luo, J.; Lin, X. T.; Niu, X. B.; Wu, M. Q.; Li, R. Y. et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 2019, 4, 755–762.CrossRefGoogle Scholar
  14. [14]
    Xi, K.; He, D. Q.; Harris, C.; Wang, Y. K.; Lai, C.; Li, H. L.; Coxon, P. R.; Ding, S. J.; Wang, C.; Kumar, R. V. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.CrossRefGoogle Scholar
  15. [15]
    Yeon, J. S.; Yun, S.; Park, J. M.; Park, H. S. Surface-modified sulfur nanorods immobilized on radially assembled open-porous graphene microspheres for lithium-sulfur batteries. ACS Nano 2019, 13, 5163–5171.CrossRefGoogle Scholar
  16. [16]
    Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.CrossRefGoogle Scholar
  17. [17]
    Li, M.; Zhang, Y. N.; Wang, X. L.; Ahn, W.; Jiang, G. P.; Feng, K.; Lui, G.; Chen, Z. W. Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 2016, 26, 8408–8417.CrossRefGoogle Scholar
  18. [18]
    Li, S. J.; Pasc, A.; Fierro, V.; Celzard, A. Hollow carbon spheres, synthesis and applications - a review. J. Mater. Chem. A 2016, 4, 12686–12713.CrossRefGoogle Scholar
  19. [19]
    Li, W. Y.; Liang, Z.; Lu, Z. D.; Yao, H. B.; Seh, Z. W.; Yan, K.; Zheng, G. Y.; Cui, Y. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 2015, 5, 1500211.CrossRefGoogle Scholar
  20. [20]
    Liu, J.; Yang, T. Y.; Wang, D. W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798.CrossRefGoogle Scholar
  21. [21]
    Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.CrossRefGoogle Scholar
  22. [22]
    Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.CrossRefGoogle Scholar
  23. [23]
    He, B.; Li, W. C.; Zhang, Y.; Yu, X. F.; Zhang, B. S.; Li, F.; Lu, A. H. Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 24194–24200.CrossRefGoogle Scholar
  24. [24]
    Lu, J. H.; Lian, F.; Guan, L. L.; Zhang, Y. X.; Ding, F. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J. Mater. Chem. A 2019, 7, 991–997.CrossRefGoogle Scholar
  25. [25]
    Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571–1579.CrossRefGoogle Scholar
  26. [26]
    Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013.CrossRefGoogle Scholar
  27. [27]
    Zhou, J.; Liu, X. J.; Zhou, J. B.; Zhao, H. Y.; Lin, N.; Zhu, L. Q.; Zhu, Y. C.; Wang, G. M.; Qian, Y. T. Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries. Nanoscale Horiz. 2019, 4, 182–189.CrossRefGoogle Scholar
  28. [28]
    Luo, R. J.; Yu, Q. H.; Lu, Y.; Zhang, M. J.; Peng, T.; Yan, H. L.; Liu, X. M.; Kim, J. K.; Luo, Y. S. 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries. Nanoscale Horiz. 2019, 4, 531–539.CrossRefGoogle Scholar
  29. [29]
    Shi, J. L.; Tang, C.; Peng, H. J.; Zhu, L.; Cheng, X. B.; Huang, J. Q.; Zhu, W. C.; Zhang, Q. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries. Small 2015, 11, 5243–5252.CrossRefGoogle Scholar
  30. [30]
    Xu, H. B.; Liu, Y.; Bai, Q. Y.; Wu, R. B. Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3558–3562.CrossRefGoogle Scholar
  31. [31]
    Zhang, J.; Li, J. Y.; Wang, W. P.; Zhang, X. H.; Tan, X. H.; Chu, W. G.; Guo, Y. G. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 2018, 8, 1702839.CrossRefGoogle Scholar
  32. [32]
    Chang, Z.; Dou, H.; Ding, B.; Wang, J.; Wang, Y.; Hao, X. D.; MacFarlane, D. R. Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries. J. Mater. Chem. A 2017, 5, 250–257.CrossRefGoogle Scholar
  33. [33]
    Ma, F.; Liang, J. S.; Wang, T. Y.; Chen, X.; Fan, Y. N.; Hultman, B.; Xie, H.; Han, J. T.; Wu, G.; Li, Q. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes. Nanoscale 2018, 10, 5634–5641.CrossRefGoogle Scholar
  34. [34]
    Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.CrossRefGoogle Scholar
  35. [35]
    Xiao, D. J.; Lu, C. X.; Chen, C. M.; Yuan, S. X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216–222.CrossRefGoogle Scholar
  36. [36]
    Chen, L.; Yang, W. W.; Zhang, H.; Liu, J. G.; Zhou, Y. Self-templated preparation of hollow mesoporous TiN microspheres as sulfur host materials for advanced lithium-sulfur batteries. J. Mater. Sci. 2018, 53, 10363–10371.CrossRefGoogle Scholar
  37. [37]
    Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031–6039.CrossRefGoogle Scholar
  38. [38]
    Li, X. X.; Gao, B.; Huang, X.; Guo, Z. J.; Li, Q. W.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Conductive mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 2961–2969.CrossRefGoogle Scholar
  39. [39]
    Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239–248.CrossRefGoogle Scholar
  40. [40]
    Guo, B. S.; Bandaru, S.; Dai, C. L.; Chen, H.; Zhang, Y. Q.; Xu, Q. J.; Bao, S. J.; Chen, M. Y.; Xu, M. W. Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 43707–43715.CrossRefGoogle Scholar
  41. [41]
    Yu, X. Y.; Zhou, G. M.; Cui, Y. Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer. ACS Appl. Mater. Interfaces 2019, 11, 3080–3086.CrossRefGoogle Scholar
  42. [42]
    Zhu, X. Y.; Zhao, W.; Song, Y. Z.; Li, Q. C.; Ding, F.; Sun, J. Y.; Zhang, L.; Liu, Z. F. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201.CrossRefGoogle Scholar
  43. [43]
    Peng, Q.; Dong, Y. J.; Li, Y. D. ZnSe semiconductor hollow microspheres. Angew. Chem. 2003, 115, 3135–3138.CrossRefGoogle Scholar
  44. [44]
    Liu, J. D.; Liang, J. J.; Wang, C. Y.; Ma, J. M. Electrospun CoSe@N-doped carbon nanofibers with highly capacitive Li storage. J. Energy Chem. 2019, 33, 160–166.CrossRefGoogle Scholar
  45. [45]
    Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.CrossRefGoogle Scholar
  46. [46]
    Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liang Chen
    • 1
    • 2
    Email author
  • Weiwei Yang
    • 2
  • Jianguo Liu
    • 2
  • Yong Zhou
    • 2
  1. 1.Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis, Hunan Key Laboratory of Applied Environmental PhotocatalysisChangsha UniversityChangshaChina
  2. 2.Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied SciencesNanjing UniversityNanjingChina

Personalised recommendations