Advertisement

High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules

  • Songting Wu
  • Zhong Xin
  • Shicheng ZhaoEmail author
  • Shengtong SunEmail author
Research Article
  • 43 Downloads

Abstract

Using two-dimensional (2D) metal-organic framework (MOF) nanosheets as new building blocks to create more complex architectures at the mesoscopic/macroscopic scale has attracted extensive interest in recent years. Nevertheless, it remains a great challenge to assemble MOF nanosheets into hierarchical hollow structures so far. In this paper, we describe a successful example of hierarchical MOF nanosheet microcapsules, with precisely controlled sizes, produced on large scale within minutes with a continuous droplet microfluidic strategy. Following a reaction/diffusion growth mechanism, the microcapsule shells feature a continuous smooth inner layer and a porous outer layer. Such hierarchical structure enables the encapsulation of magnetite nanoparticles inside and loading of dense gold nanoparticles outside the microcapsules, which exhibit highly efficient heterogeneous catalytic activity and easy recyclability. The present microfluidic assembly method offers a new pathway for preparing hierarchical MOF nanosheet structures, with the potential for extension to the formation of other 2D nanosheets in general.

Keywords

metal-organic framework nanosheet droplet microfluidics microcapsule hierarchical structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51873035, 21604024, and 21878089). This work was also sponsored by the Shanghai Municipal Natural Science Foundation (No. 17ZR1440400), “Qimingxing Plan” (No. 19QA1400200), “Chenguang Program” supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (No. 16CG32), and the Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2019_2507_MOESM1_ESM.pdf (5.6 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.CrossRefGoogle Scholar
  2. [2]
    Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.CrossRefGoogle Scholar
  3. [3]
    Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.CrossRefGoogle Scholar
  4. [4]
    Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincã, M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783.CrossRefGoogle Scholar
  5. [5]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  6. [6]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  7. [7]
    Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.CrossRefGoogle Scholar
  8. [8]
    Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.CrossRefGoogle Scholar
  9. [9]
    Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.CrossRefGoogle Scholar
  10. [10]
    Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.CrossRefGoogle Scholar
  11. [11]
    Xuan, W. M.; Zhu, C. F.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 2012, 41, 1677–1695.CrossRefGoogle Scholar
  12. [12]
    He, S.; Chen, Y. F.; Zhang, Z. C.; Ni, B.; He, W.; Wang, X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci. 2016, 7, 7101–7105.CrossRefGoogle Scholar
  13. [13]
    Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725–12729.CrossRefGoogle Scholar
  14. [14]
    Xia, H. C.; Zhang, J. N.; Yang, Z.; Guo, S. Y.; Guo, S. H.; Xu, Q. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Mirco Lett. 2017, 9, 43.CrossRefGoogle Scholar
  15. [15]
    Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.CrossRefGoogle Scholar
  16. [16]
    Zheng, S. S.; Li, B.; Tang, Y. J.; Li, Q.; Xue, H. G.; Pang, H. Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)42H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale 2018, 10, 13270–13276.CrossRefGoogle Scholar
  17. [17]
    Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C. H.; Feng, P. Y.; Bu, X. H. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4227–4231.CrossRefGoogle Scholar
  18. [18]
    Sun, H.; Lian, Y. B.; Yang, C.; Xiong, L. K.; Qi, P. W.; Mu, Q. Q.; Zhao, X. H.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 2363–2371.CrossRefGoogle Scholar
  19. [19]
    Cai, Z. X.; Wang, Z. L.; Kim, J.; Yamauchi, Y. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 2019, 31, 1804903.CrossRefGoogle Scholar
  20. [20]
    Zou, J. L.; Kim, F. Self-assembly of two-dimensional nanosheets induced by interfacial polyionic complexation. ACS Nano 2012, 6, 10606–10613.CrossRefGoogle Scholar
  21. [21]
    Hong, J.; Char, K.; Kim, B. S. Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle. J. Phys. Chem. Lett. 2010, 1, 3442–3445.CrossRefGoogle Scholar
  22. [22]
    Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum- glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423–7426.CrossRefGoogle Scholar
  23. [23]
    Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040.CrossRefGoogle Scholar
  24. [24]
    Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.CrossRefGoogle Scholar
  25. [25]
    Jeong, G. Y.; Ricco, R.; Liang, K.; Ludwig, J.; Kim, J. O.; Falcaro, P.; Kim, D. P. Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation. Chem. Mater. 2015, 27, 7903–7909.CrossRefGoogle Scholar
  26. [26]
    Faustini, M.; Kim, J.; Jeong, G. Y.; Kim, J. Y.; Moon, H. R.; Ahn, W. S.; Kim, D. P. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 2013, 135, 14619–14626.CrossRefGoogle Scholar
  27. [27]
    Witters, D.; Vergauwe, N.; Ameloot, R.; Vermeir, S.; De Vos, D.; Puers, R.; Sels, B.; Lammertyn, J. Digital microfluidic high-throughput printing of single metal-organic framework crystals. Adv. Mater. 2012, 24, 1316–1320.CrossRefGoogle Scholar
  28. [28]
    Wang, Y.; Li, L. J.; Yan, L. T.; Gu, X.; Dai, P. C.; Liu, D. D.; Bell, J. G.; Zhao, G. M.; Zhao, X. B.; Thomas, K. M. Bottom-up fabrication of ultrathin 2D Zr metal-organic framework nanosheets through a facile continuous microdroplet flow reaction. Chem. Mater. 2018, 30, 3048–3059.CrossRefGoogle Scholar
  29. [29]
    He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal- organic framework based microcapsules. Angew. Chem., Int. Ed. 2018, 130, 10305–10309.CrossRefGoogle Scholar
  30. [30]
    Tan, J. C.; Cheetham, A. K. Mechanical properties of hybrid inorganic- organic framework materials: Establishing fundamental structure-property relationships. Chem. Soc. Rev. 2011, 40, 1059–1080.CrossRefGoogle Scholar
  31. [31]
    Li, W. B.; Yang, Z. H.; Zhang, G. L.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C. J. Stiff metal-organic framework-polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A 2014, 2, 2110–2118.CrossRefGoogle Scholar
  32. [32]
    Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces 2013, 5, 2503–2509.CrossRefGoogle Scholar
  33. [33]
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.CrossRefGoogle Scholar
  34. [34]
    Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L. Y.; Kim, J. W.; Fernandez-Nieves, A.; Martinez, C. J. et al. Designer emulsions using microfluidics. Mater. Today 2008, 11, 18–27.CrossRefGoogle Scholar
  35. [35]
    Xu, Y. Nanofluidics: A new arena for materials science. Adv. Mater. 2018, 30, 1702419.CrossRefGoogle Scholar
  36. [36]
    Tan, Z.; Chen, S. F.; Peng, X. S.; Zhang, L.; Gao, C. J. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018, 360, 518–521.CrossRefGoogle Scholar
  37. [37]
    Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133, 5640–5643.CrossRefGoogle Scholar
  38. [38]
    Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “Modular Assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134, 16524–16527.CrossRefGoogle Scholar
  39. [39]
    Yu, J.; Mu, C.; Yan, B. Y.; Qin, X. Y.; Shen, C.; Xue, H. G.; Pang, H. Nanoparticle/MOF composites: Preparations and applications. Mater. Horiz. 2017, 4, 557–569.CrossRefGoogle Scholar
  40. [40]
    Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/ porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035–2044.CrossRefGoogle Scholar
  41. [41]
    Yan, R.; Zhao, Y.; Yang, H.; Kang, X. J.; Wang, C.; Wen, L. L.; Lu, Z. D. Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal-organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater. 2018, 28, 1802021.CrossRefGoogle Scholar
  42. [42]
    Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.CrossRefGoogle Scholar
  43. [43]
    Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814–8820.CrossRefGoogle Scholar
  44. [44]
    Ke, F.; Zhu, J. F.; Qiu, L. G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267–1269CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Center for Advanced Low-dimension Materials, National Engineering Research Center for Dyeing and Finishing of TextilesDonghua UniversityShanghaiChina

Personalised recommendations