Nano Research

, Volume 12, Issue 11, pp 2729–2735 | Cite as

Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment

  • Yawei Feng
  • Kai Han
  • Tao Jiang
  • Zhenfeng Bian
  • Xi Liang
  • Xia CaoEmail author
  • Hexing LiEmail author
  • Zhong Lin WangEmail author
Research Article


Environmental deterioration, especially water pollution, is widely dispersed and could affect the quality of people’s life at large. Though the sewage treatment plants are constructed to meet the demands of cities, distributed treatment units are still in request for the supplementary of centralized purification beyond the range of plants. Electrochemical degradation can reduce organic pollution to some degree, but it has to be powered. Triboelectric nanogenerator (TENG) is a newly-invented technology for low-frequency mechanical energy harvesting. Here, by integrating a rotary TENG (R-TENG) as electric power source with an electrochemical cell containing a modified graphite felt cathode for hydrogen peroxide (H2O2) along with hydroxyl radical (•OH) generation by Fenton reaction and a platinum sheet anode for active chlorine generation, a self-powered electrochemical system (SPECS) was constructed. Under the driven of mechanical energy or wind flow, such SPECS can efficiently degrade dyes after power management in neutral condition without any O2 aeration. This work not only provides a guideline for optimizing self-powered electrochemical reaction, but also displays a strategy based on the conversion from distributed mechanical energy to chemical energy for environmental remediation.


self-powered electrochemistry Fenton reaction active chlorine organic contaminant degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Technology R&D Program of China (No. 2016YFA0202704), Beijing Municipal Science & Technology Commission (Nos. Z171100000317001, Z171100002017017, and Y3993113DF), the National Natural Science Foundation of China (Nos. 51432005, 5151101243, 51561145021, and 21761142011).

Supplementary material

12274_2019_2506_MOESM1_ESM.mp4 (1.7 mb)
Supplementary material, approximately 1.74 MB.
12274_2019_2506_MOESM2_ESM.pdf (3.9 mb)
Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment


  1. [1]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy2012, 1, 328–334.Google Scholar
  2. [2]
    Wang, Z. L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics-A recall on the original thoughts for coining these fields. Nano Energy2018, 54, 477–483.Google Scholar
  3. [3]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives. Faraday Discuss.2014, 176, 447–458.Google Scholar
  4. [4]
    Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater.2019, 9, 1802906.Google Scholar
  5. [5]
    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today2017, 20, 74–82.Google Scholar
  6. [6]
    Shao, J. J.; Willatzen, M.; Jiang, T.; Tang, W.; Chen, X. Y.; Wang, J.; Wang, Z. L. Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current. Nano Energy2019, 59, 380–389.Google Scholar
  7. [7]
    Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun.2019, 10, 1426.Google Scholar
  8. [8]
    Liang, X.; Jiang, T.; Liu, G. X.; Xiao, T. X.; Xu, L.; Li, W.; Xi, F. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater.2019, 29, 1807241.Google Scholar
  9. [9]
    Zhang, C.; Wang, Z. L. Tribotronics-A new field by coupling triboelectricity and semiconductor. Nano Today2016, 11, 521–536.Google Scholar
  10. [10]
    Yin, W. L.; Xie, Y. D.; Long, J.; Zhao, P. F.; Chen, J. K.; Luo, J. K.; Wang, X. Z.; Dong, S. R. A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG). Nano Energy2018, 50, 16–24.Google Scholar
  11. [11]
    Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res.2018, 11, 4313–4322.Google Scholar
  12. [12]
    Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater.2019, 31, 1807795.Google Scholar
  13. [13]
    Gao, S. Y.; Wang, M.; Chen, Y.; Tian, M.; Zhu, Y. Z.; Wei, X. J.; Jiang, T. An advanced electro-Fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst. Nano Energy2018, 45, 21–27.Google Scholar
  14. [14]
    Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res.2018, 11, 1873–1882.Google Scholar
  15. [15]
    Yeh, M. H.; Guo, H. Y.; Lin, L.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. Rolling friction enhanced free-standing triboelectric nanogenerators and their applications in self-powered electrochemical recovery systems. Adv. Funct. Mater.2016, 26, 1054–1062.Google Scholar
  16. [16]
    Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater.2016, 6, 1501778.Google Scholar
  17. [17]
    Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Selfpowered water splitting using flowing kinetic energy. Adv. Mater.2015, 27, 272–276.Google Scholar
  18. [18]
    Su, Y. J.; Yang, Y.; Zhang, H. L.; Xie, Y. N.; Wu, Z. M.; Jiang, Y. D.; Fukata, N.; Bando, Y.; Wang, Z. L. Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator. Nanotechnology2013, 24, 295401.Google Scholar
  19. [19]
    Yu, X.; Han, X.; Zhao, Z. H.; Zhang, J.; Guo, W. B.; Pan, C. F.; Li, A. X.; Liu, H.; Wang, Z. L. Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy2015, 11, 19–27.Google Scholar
  20. [20]
    Wei, A. M.; Xie, X. K.; Wen, Z.; Zheng, H. C.; Lan, H. W.; Shao, H. Y.; Sun, X. H.; Zhong, J.; Lee, S. T. Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano2018, 12, 8625–8632.Google Scholar
  21. [21]
    Feng, Y. W.; Ling, L. L.; Nie, J. H.; Han, K.; Chen, X. Y.; Bian, Z. F.; Li, H. X.; Wang, Z. L. Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators. ACS Nano2017, 11, 12411–12418.Google Scholar
  22. [22]
    Liu, W. X.; Wu, J. Y.; He, W.; Xu, F. L. A review on perfluoroalkyl acids studies: Environmental behaviors, toxic effects, and ecological and health risks. Ecosyst. Health Sustain.2019, 5, 1–19.Google Scholar
  23. [23]
    Deng, W. J.; Li, N.; Ying, G. G. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. Environ. Geochem. Health2018, 40, 2191–2203.Google Scholar
  24. [24]
    Dominguez, C. M.; Oturan, N.; Romero, A.; Santos, A.; Oturan, M. A. Optimization of electro-Fenton process for effective degradation of organochlorine pesticide lindane. Catal. Today2018, 313, 196–202.Google Scholar
  25. [25]
    Zhou, M. H.; Yu, Q. H.; Lei, L. C.; Barton, G. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep. Purif. Technol.2007, 57, 380–387.Google Scholar
  26. [26]
    An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano2018, 12, 9441–9450.Google Scholar
  27. [27]
    Zhang, Z. H.; Meng, H. S.; Wang, Y. J.; Shi, L. M.; Wang, X.; Chai, S. N. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in electro-Fenton process. Electrochim. Acta2018, 260, 112–120.Google Scholar
  28. [28]
    Schwarz, H. A.; Dodson, R. W. Equilibrium between hydroxyl radicals and thallium (II) and the oxidation potential of hydroxyl(aq). J. Phys. Chem.1984, 88, 3643–3647.Google Scholar
  29. [29]
    Rositano, J.; Nicholson, B. C.; Pieronne, P. Destruction of cyanobacterial toxins by ozone. Ozone: Sci. Eng.1998, 20, 223–238.Google Scholar
  30. [30]
    Szpyrkowicz, L.; Kaul, S. N.; Neti, R. N.; Satyanarayan, S. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res.2005, 39, 1601–1613.Google Scholar
  31. [31]
    Ma, X. J.; Zhou, M. H. A comparative study of azo dye decolorization by electro-Fenton in two common electrolytes. J. Chem. Technol. Biotechnol.2009, 84, 1544–1549.Google Scholar
  32. [32]
    Yu, F. K.; Zhou, M. H.; Yu, X. M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim. Acta2015, 163, 182–189.Google Scholar
  33. [33]
    Sellers, R. M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst1980, 105, 950–954.Google Scholar
  34. [34]
    Barreto, J. C.; Smith, G. S.; Strobel, N. H. P.; McQuillin, P. A.; Miller, T. A. Terephthalic acid: A dosimeter for the detection of hydroxyl radicals in vitro. Life Sci., 1995, 56, PL89–PL 96.Google Scholar
  35. [35]
    Wen, S. L.; Niu, Z. Y.; Zhang, Z.; Li, L. H.; Chen, Y. C. In-situ synthesis of 3D GA on titanium wire as a binder-free electrode for electro-Fenton removing of EDTA-Ni. J. Hazard. Mater.2018, 341, 128–137.Google Scholar
  36. [36]
    Wang, Y.; Liu, Y. H.; Liu, T. F.; Song, S. Q.; Gui, X. C.; Liu, H.; Tsiakaras, P. Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Appl. Catal., B.2014, 156, 1–7.Google Scholar
  37. [37]
    Agladze, G. R.; Tsurtsumia, G. S.; Jung, B. I.; Kim, J. S.; Gorelishvili, G. Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells. J. Appl. Electrochem.2007, 37, 375–383.Google Scholar
  38. [38]
    de Araújo, D. M.; Cotillas, S.; Sáez, C.; Cañizares, P.; Martínez-Huitle, C. A.; Rodrigo, M. A. Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. J. Electroanal. Chem.2015, 757, 144–149.Google Scholar
  39. [39]
    Thiam, A.; Salazar, R.; Brillas, E.; Sirés, I. Electrochemical advanced oxidation of carbofuran in aqueous sulfate and/or chloride media using a flow cell with a RuO2-based anode and an air-diffusion cathode at pre-pilot scale. Chem. Eng. J.2018, 335, 133–144.Google Scholar
  40. [40]
    Yu, K.; Yang, S. G.; He, H.; Sun, C.; Gu, C. G.; Ju, Y. M. Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: Pathways and mechanism. J. Phys. Chem. A2009, 113, 10024–10032.Google Scholar
  41. [41]
    Fu, H. B.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F.; Chen, J. M. Photocatalytic degradation of rhb by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol.2008, 42, 2085–2091.Google Scholar
  42. [42]
    Chen, Y.; Wang, M.; Tian, M.; Zhu, Y. Z.; Wei, X. J.; Jiang, T.; Gao, S. Y. An innovative electro-Fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst. Nano Energy2017, 42, 314–321.Google Scholar
  43. [43]
    Qin, H. F.; Cheng, G.; Zi, Y. L.; Gu, G. Q.; Zhang, B.; Shang, W. Y.; Yang, F.; Yang, J. J.; Du, Z. L.; Wang, Z. L. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater.2018, 28, 1805216.Google Scholar
  44. [44]
    Li, X. H.; Jin, X. D.; Zhao, N. N.; Angelidaki, I.; Zhang, Y. F. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res.2017, 119, 67–72.Google Scholar
  45. [45]
    Yang, Y.; Zhang, H. L.; Lee, S.; Kim, D.; Hwang, W.; Wang, Z. L. Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett.2013, 13, 803–808.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Education Ministry Key and International Joint Lab of Resource Chemistry and Shanghai Key Lab of Rare Earth Functional MaterialsShanghai Normal UniversityShanghaiChina
  4. 4.School of Environmental and Chemical EngineeringShanghai University of Electric PowerShanghaiChina
  5. 5.School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations