Nano Research

, Volume 12, Issue 11, pp 2718–2722 | Cite as

Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy

  • Qiang Sun
  • Han Gao
  • Xiaomei Yao
  • Kun Zheng
  • Pingping Chen
  • Wei Lu
  • Jin ZouEmail author
Research Article


In this study, we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy. Detailed structural characterizations suggest that wurtzite structured InAs nanosheets, with features of extensive \(\{11\overline{2}0\}\) surfaces, grown along the \(<1\overline{1}0\overline{2}>\) direction and adopted {0001} nanosheet/catalyst interfaces, are initiated from wurtzite structured \([000\overline{1}]\) nanowires as the inclined epitaxial growth due to relatively higher In concentrations in Au catalysts, and grown from these inclined nanostructures through catalyst-induced axial growth and their enhanced lateral growth under the high growth temperature. Based on the facts that the nanosheets contain large low energy \(\{11\overline{2}0\}\) surfaces and {0001} nanosheet/catalyst interfaces, the growth of our nanosheets is a thermodynamically driven process. This study provides new insights into fabricating free-standing III-V nanosheets for their applications in future nanoscale devices.


InAs nanosheet wurtzite structure catalyst supersaturation molecular beam epitaxy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors declare no competing financial interest. This research was supported by the Australian Research Council, the National Key R&D Program of China (No. 2016YFB0402401), the National Natural Science Foundation of China (Nos. 11634009 and 11774016) and the Key Programs of Frontier Science of the Chinese Academy of Sciences (No. QYZDJ-SSW-JSC007). The Australian Microscopy & Microanalysis Research Facility is also gratefully acknowledged for providing microscopy facilities for this study.

Supplementary material

12274_2019_2504_MOESM1_ESM.pdf (1.1 mb)
Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy


  1. [1]
    Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B. Surface chemistry of prototypical bulk II–VI and III–V semiconductors and implications for chemical sensing. Chem. Rev.2000, 100, 2505–2536.Google Scholar
  2. [2]
    Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys.2004, 76, 323.Google Scholar
  3. [3]
    Sau, J. D.; Lutchyn, R. M.; Tewari, S.; Sarma, S. D. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett.2010, 104, 040502.Google Scholar
  4. [4]
    Borg, M.; Schmid, H.; Gooth, J.; Rossell, M. D.; Cutaia, D.; Knoedler, M.; Bologna, N.; Wirths, S.; Moselund, K. E.; Riel, H. High-mobility GaSb nanostructures cointegrated with InAs on Si. ACS Nano2017, 11, 2554–2560.Google Scholar
  5. [5]
    Thelander, C.; Caroff, P.; Plissard, S.; Dey, A. W.; Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett.2011, 11, 2424–2429.Google Scholar
  6. [6]
    Lu, H.; Schaff, W. J.; Hwang, J.; Wu, H.; Koley, G.; Eastman, L. F. Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy. Appl. Phys. Lett.2001, 79, 1489–1491.Google Scholar
  7. [7]
    Gonzalez, L.; Garcia, J. M.; Garcia, R.; Briones, F.; Martinez-Pastor, J.; Ballesteros, C. Influence of buffer-layer surface morphology on the selforganized growth of InAs on InP(001) nanostructures. Appl. Phys. Lett.2000, 6, 1104–1106.Google Scholar
  8. [8]
    Kuo, C. P.; Vong, S. K.; Cohen, R. M.; Stringfellow, G. B. Effect of mismatch strain on band gap in III-V semiconductors. J. Appl. Phys.1985, 57, 5428–5432.Google Scholar
  9. [9]
    Jain, S. C.; Willander, M.; Maes, H. Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors. Semicond. Sci. Technol.1996, 11, 641.Google Scholar
  10. [10]
    Conesa-Boj, S.; Russo-Averchi, E.; Dalmau-Mallorqui, A.; Trevino, J.; Pecora, E. F.; Forestiere, C.; Handin, A.; Ek, M.; Zweifel, L.; Wallenberg, L. R. et al. Vertical “III-V” V-shaped nanomembranes epitaxially grown on a patterned Si[001] substrate and their enhanced light scattering. ACS Nano2012, 6, 10982–10991.Google Scholar
  11. [11]
    Chi, C. Y.; Chang, C. C.; Hu, S.; Yeh, T. W.; Cronin, S. B.; Dapkus, P. D. Twin-free GaAs nanosheets by selective area growth: Implications for defect-free nanostructures. Nano Lett.2013, 13, 2506–2515.Google Scholar
  12. [12]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett.1964, 4, 89–90.CrossRefGoogle Scholar
  13. [13]
    Zou, J.; Paladugu, M.; Wang, H.; Auchterlonie, G. J.; Guo, Y. N.; Kim, Y.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Growth mechanism of truncated triangular III–V nanowires. Small2007, 3, 389–393.Google Scholar
  14. [14]
    Zhou, C.; Zhang, X. T.; Zheng, K.; Chen, P. P.; Lu, W.; Zou, J. Self-assembly growth of In-rich InGaAs structured nanowires with remarkable near-infrared photoresponsivity. Nano Lett.2017, 17, 7824–7830.Google Scholar
  15. [15]
    Guo, Y. N.; Xu, H. Y.; Auchterlonie, G. J.; Burgess, T.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Shu, H. B.; Chen, X. S. Phase separation induced by Au catalysts in ternary InGaAs nanowires. Nano Lett.2013, 13, 643–650.Google Scholar
  16. [16]
    Dick, K. A.; Deppert, K.; Larsson, M. W.; Mårtensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched “nanotrees” by controlled seeding of multiple branching events. Nat. Mater.2004, 3, 380–384.Google Scholar
  17. [17]
    Zhang, Z.; Lu, Z. Y.; Chen, P. P.; Lu, W.; Zou, J. Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning V/III ratio in molecular beam epitaxy. Acta Mater.2015, 92, 25–32.Google Scholar
  18. [18]
    Zhou, C.; Zheng, K.; Liao, Z. M.; Chen, P. P.; Lu, W.; Zou, J. Phase purification of GaAs nanowires by prolonging the growth duration in MBE. J. Mater. Chem. C2017, 5, 5257–5262.Google Scholar
  19. [19]
    Zhou, C.; Zheng, K.; Lu, Z. Y.; Zhang, Z.; Liao, Z. M.; Chen, P. P.; Lu, W.; Zou, J. Quality control of GaAs nanowire structures by limiting As flux in molecular beam epitaxy. J. Phys. Chem. C2015, 119, 20721–20727.Google Scholar
  20. [20]
    Krishnamachari, U.; Borgstrom, M.; Ohlsson, B. J.; Panev, N.; Samuelson, L.; Seifert, W.; Larsson, M. W.; Wallenberg, L. R. Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett.2004, 85, 2077–2079.Google Scholar
  21. [21]
    Zhang, Z.; Chen, P. P.; Lu, W.; Zou, J. Defect-free thin InAs nanowires grown using molecular beam epitaxy. Nanoscale2016, 8, 1401–1406.Google Scholar
  22. [22]
    Zhang, Z.; Zheng, K.; Lu, Z. Y.; Chen, P. P.; Lu, W.; Zou, J. Catalyst orientation-induced growth of defect-free zinc-blende structured <00> InAs nanowires. Nano Lett.2015, 15, 876–882.Google Scholar
  23. [23]
    Aagesen, M.; Johnson, E.; Sorensen, C. B.; Mariager, S. O.; Feidenhans’l, R.; Spiecker, E.; Nygard, J.; Lindelof, P. E. Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nat Nanotechnol2007, 2, 761–764.Google Scholar
  24. [24]
    Pan, D.; Wang, J. Y.; Zhang, W.; Zhu, L. J.; Su, X. J.; Fan, F. R.; Fu, Y. H.; Huang, S. Y.; Wei, D. H.; Zhang, L. J. et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale. Nano Lett.2019, 19, 1632–1642.Google Scholar
  25. [25]
    Pan, D.; Fan, D. X.; Kang, N.; Zhi, J. H.; Yu, X. Z.; Xu, H. Q.; Zhao, J. H. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett.2016, 16, 834–841.Google Scholar
  26. [26]
    de la Mata, M.; Leturcq, R.; Plissard, S. R.; Rolland, C.; Magen, C.; Arbiol, J.; Caroff, P. Twin-induced InSb nanosails: A convenient high mobility quantum system. Nano Lett.2016, 16, 825–833.Google Scholar
  27. [27]
    Soo, M. T.; Zheng, K.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Mirror-twin induced bicrystalline InAs nanoleaves. Nano Res.2016, 9, 766–773.Google Scholar
  28. [28]
    Kelrich, A.; Sorias, O.; Calahorra, Y.; Kauffmann, Y.; Gladstone, R.; Cohen, S.; Orenstein, M.; Ritter, D. InP nanoflag growth from a nanowire template by in situ catalyst manipulation. Nano Lett.2016, 16, 2837–2844.Google Scholar
  29. [29]
    Xu, H. Y.; Wang, Y.; Guo, Y. N.; Liao, Z. M.; Gao, Q.; Jiang, N.; Tan, H. H.; Jagadish, C.; Zou, J. High-density, defect-free, and taper-restrained epitaxial GaAs nanowires induced from annealed Au thin films. Cryst. Growth Des.2012, 12, 2018–2022.Google Scholar
  30. [30]
    Milnes, A. G.; Polyakov, A. Y. Indium arsenide: A semiconductor for high speed and electro-optical devices. Mater. Sci. Eng.: B1993, 18, 237–259.Google Scholar
  31. [31]
    Dayeh, S. A.; Yu, E. T.; Wang, D. L. Excess indium and substrate effects on the growth of InAs nanowires. Small2007, 3, 1683–1687.Google Scholar
  32. [32]
    Persson, A. I.; Fröberg, L. E.; Jeppesen, S.; Björk, M. T.; Samuelson, L. Surface diffusion effects on growth of nanowires by chemical beam epitaxy. J. Appl. Phys.2007, 101, 034313.Google Scholar
  33. [33]
    Doh, Y. J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science2005, 309, 272–275.Google Scholar
  34. [34]
    Weng, Q. C.; An, Z. H.; Xiong, D. Y.; Zhang, B.; Chen, P. P.; Li, T. X.; Zhu, Z. Q.; Lu, W. Photocurrent spectrum study of a quantum dot singlephoton detector based on resonant tunneling effect with near-infrared response. Appl. Phys. Lett.2014, 105, 031114.Google Scholar
  35. [35]
    Cahn, J. W.; Hanneman, R. E. (111) surface tensions of III-V compounds and their relationship to spontaneous bending of thin crystals. Surf. Sci.1964, 1, 387–398.Google Scholar
  36. [36]
    Zhang, Z.; Lu, Z. Y.; Chen, P. P.; Xu, H. Y.; Guo, Y. N.; Liao, Z. M.; Shi, S. X.; Lu, W.; Zou, J. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. Appl. Phys. Lett.2013, 103, 073109.Google Scholar
  37. [37]
    Dreyer, C. E.; Janotti, A.; Van de Walle, C. G. Absolute surface energies of polar and nonpolar planes of GaN. Phys Rev B2014, 89, 081305.Google Scholar
  38. [38]
    Potts, H.; Morgan, N. P.; Tutuncuoglu, G.; Friedl, M.; Morral, A. F. i. Tuning growth direction of catalyst-free InAs (Sb) nanowires with indium droplets. Nanotechnology2016, 28, 054001.Google Scholar
  39. [39]
    Tornberg, M.; Dick, K. A.; Lehmann, S. Branched InAs nanowire growth by droplet confinement. Appl. Phys. Lett.2018, 113, 123104.Google Scholar
  40. [40]
    Wang, J.; Plissard, S. R.; Verheijen, M. A.; Feiner, L. F.; Cavalli, A.; Bakkers, E. P. A. M. Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett.2013, 13, 3802–3806.Google Scholar
  41. [41]
    Novakovic, R.; Ricci, E.; Gnecco, F. Surface and transport properties of Au.In liquid alloys. Surf. Sci.2006, 600, 5051–5061.Google Scholar
  42. [42]
    Schwarz, K. W.; Tersoff, J. Elementary processes in nanowire growth. Nano Lett2011, 11, 316–320.Google Scholar
  43. [43]
    Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett.2007, 99, 146101.Google Scholar
  44. [44]
    Zhang, Z.; Lu, Z. Y.; Xu, H. Y.; Chen, P. P.; Lu, W.; Zou, J. Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Res.2014, 7, 1640–1649.Google Scholar
  45. [45]
    Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D: Appl. Phys.2010, 43, 445402.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qiang Sun
    • 1
  • Han Gao
    • 1
  • Xiaomei Yao
    • 1
    • 2
    • 3
  • Kun Zheng
    • 4
  • Pingping Chen
    • 2
  • Wei Lu
    • 2
  • Jin Zou
    • 1
    • 5
    Email author
  1. 1.Materials EngineeringThe University of QueenslandSt LuciaAustralia
  2. 2.State Key Laboratory for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Institute of Microstructure and Properties of Advanced MaterialsBeijing University of TechnologyBeijingChina
  5. 5.Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaAustralia

Personalised recommendations