Advertisement

Nano Research

, Volume 12, Issue 11, pp 2712–2717 | Cite as

Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate

  • Zhihong Zhang
  • Xiaozhi Xu
  • Ruixi Qiao
  • Junjiang Liu
  • Yuxia Feng
  • Zhibin Zhang
  • Peizhao Song
  • Muhong Wu
  • Lan Zhu
  • Xuelin Yang
  • Peng Gao
  • Lei Liu
  • Jie Xiong
  • Enge Wang
  • Kaihui LiuEmail author
Research Article
  • 63 Downloads

Abstract

The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance, in which thin metal film is one heart material as conductive electrodes. However, conventional metal films are typically polycrystalline with random domain orientations and various grain boundaries, which greatly degrade their mechanical, thermal and electrical properties. Hence, it is highly demanded to produce single-crystal metal films with epitaxy in an appealing route. Traditional epitaxy on non-metal single-crystal substrates has difficulty in exfoliating away due to the formation of chemical bonds. Newly developed epitaxy on single-crystal graphene enables the easy exfoliation of epilayers but the annealing temperature must be high (typical 500–1,000 °C and out of the tolerant range of integrated circuit technology) due to the relative weak interfacial interactions. Here we demonstrate the facile production of 6-inch transferable high-quality Pd(111) films on single-crystal hybrid graphene/Cu(111) substrate with CMOS-compatible annealing temperature of 150 °C only. The interfacial interaction between Pd and hybrid graphene/Cu(111) substrate is strong enough to enable the low-temperature epitaxy of Pd(111) films and weak enough to facilitate the easy film release from substrate. The obtained Pd(111) films possess superior properties to polycrystalline ones with ~ 0.25 eV higher work function and almost half sheet resistance. This technique is proved to be applicable to other metals, such as Au and Ag. As the single-crystal graphene/Cu(111) substrates are obtained from industrial Cu foils and accessible in meter scale, our work will promote the massive applications of large-area high-quality metal films in the development of next-generation electronic and optoelectronic devices.

Keywords

single-crystal metal film graphene/Cu(111) substrate interfacial interactions meter scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2016YFA0300903 and 2016YFA0300804), the National Natural Science Foundation of China (NSFC) (No. 11888101), the National Equipment Program of China (No. ZDYZ2015-1), Beijing Graphene Innovation Program (No. Z181100004818003), Beijing Municipal Science & Technology Commission (No. Z181100004218006), Bureau of Industry and Information Technology of Shenzhen (Graphene platform contract NO. 201901161512), and the Key R&D Program of Guangdong Province (No. 2019B010931001).

Supplementary material

12274_2019_2503_MOESM1_ESM.pdf (1.5 mb)
Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate

References

  1. [1]
    Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, 304, 422–426.CrossRefGoogle Scholar
  2. [2]
    Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324, 349–352.CrossRefGoogle Scholar
  3. [3]
    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 2018, 557, 696–700.CrossRefGoogle Scholar
  4. [4]
    Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430, 61–65.CrossRefGoogle Scholar
  5. [5]
    Mahenderkar, N. K.; Chen, Q. Z.; Liu, Y. C.; Duchild, A. R.; Hofheins, S.; Chason, E.; Switzer, J. A. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics. Science, 2017, 355, 1203–1206.CrossRefGoogle Scholar
  6. [6]
    Zhang, K.; Pitner, X. B.; Yang, R.; Nix, W. D.; Plummer, J. D.; Fan, J. A. Single-crystal metal growth on amorphous insulating substrates. Proc. Natl. Acad. Sci. USA, 2018, 115, 685–689.CrossRefGoogle Scholar
  7. [7]
    Grünbaum, E. Epitaxial growth of metal single-crystal films. Vacuum, 1974, 24, 153–164.CrossRefGoogle Scholar
  8. [8]
    Winau, D.; Koch, R.; Führmann, A.; Rieder, K. H. Film growth studies with intrinsic stress measurement: Polycrystalline and epitaxial Ag, Cu, and Au films on Mica(001). J. Appl. Phys., 1991, 70, 3081–3087.CrossRefGoogle Scholar
  9. [9]
    Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K. I.; Mizuno, S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano, 2010, 4, 7407–7414.CrossRefGoogle Scholar
  10. [10]
    Miller, D. L.; Keller, M. W.; Shaw, J. M.; Chiaramonti, A. N.; Keller, R. R. Epitaxial (111) films of Cu, Ni, and CuxNiy on α-Al2O3 (0001) for graphene growth by chemical vapor deposition. J. Appl. Phys., 2012, 112, 064317.CrossRefGoogle Scholar
  11. [11]
    Hu, B. S.; Ago, H.; Ito, Y.; Kawahara, K.; Tsuji, M.; Magome, E.; Sumitani, K.; Mizuta, N.; Ikeda, K. I.; Mizuno, S. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon, 2012, 50, 57–65.CrossRefGoogle Scholar
  12. [12]
    Walker, E. S.; Na, S. R.; Jung, D.; March, S. D.; Kim, J. S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M. L.; Liechti, K. M. et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett, 2016, 16, 6931–6938.CrossRefGoogle Scholar
  13. [13]
    Kelso, M. V.; Tubbesing, J. Z.; Chen, Q. Z.; Switzer, J. A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643). J. Am. Chem. Soc., 2018, 140, 15812–15819.CrossRefGoogle Scholar
  14. [14]
    Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun., 2011, 2, 292.CrossRefGoogle Scholar
  15. [15]
    Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett., 2011, 11, 2032–2037.CrossRefGoogle Scholar
  16. [16]
    Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett., 2012, 12, 2784–2791.CrossRefGoogle Scholar
  17. [17]
    Kim, J.; Bayram, C.; Park, H.; Cheng, C. W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun., 2014, 5, 4836.CrossRefGoogle Scholar
  18. [18]
    Kim, K. L.; Lee, W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J. H. et al. Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory. Nano Lett., 2016, 16, 334–340.CrossRefGoogle Scholar
  19. [19]
    Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev., 2017, 46, 4572–4613.CrossRefGoogle Scholar
  20. [20]
    Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544, 340–343.CrossRefGoogle Scholar
  21. [21]
    Kong, W.; Li, H. S.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y. F.; Lee, D.; Osadchy, T.; Molnar, R. J.; Gaskill, D. K. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater., 2018, 17, 999–1004.CrossRefGoogle Scholar
  22. [22]
    Qi, Y.; Wang, Y. Y.; Pang, Z. Q.; Dou, Z. P.; Wei, T. B.; Gao, P.; Zhang, S. S.; Xu, X. Z.; Chang, Z. H.; Deng, B. et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J Am Chem Soc, 2018, 140, 11935–11941.CrossRefGoogle Scholar
  23. [23]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of highquality and uniform graphene films on copper foils. Science, 2009, 324, 1312–1314.CrossRefGoogle Scholar
  24. [24]
    Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun., 2012, 3, 699.CrossRefGoogle Scholar
  25. [25]
    Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater., 2016, 15, 43–47.CrossRefGoogle Scholar
  26. [26]
    Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull., 2017, 62, 1074–1080.CrossRefGoogle Scholar
  27. [27]
    Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater., 2018, 17, 318–322.CrossRefGoogle Scholar
  28. [28]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7, 406–411.CrossRefGoogle Scholar
  29. [29]
    Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett., 2008, 8, 565–570.CrossRefGoogle Scholar
  30. [30]
    Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett., 2011, 98, 033101.CrossRefGoogle Scholar
  31. [31]
    Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater., 2015, 27, 1376–1382.CrossRefGoogle Scholar
  32. [32]
    Kim, D. W.; Kim, S. J.; Choi, H. O.; Jung, H. T. Epitaxial crystallization behaviors of various metals on a graphene surface. Adv. Mater. Interfaces, 2016, 3, 1500741.CrossRefGoogle Scholar
  33. [33]
    Lu, Z. H.; Sun, X.; Washington, M. A.; Lu, T. M. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer. J. Phy. D: Appl. Phys., 2018, 51, 095301.CrossRefGoogle Scholar
  34. [34]
    Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Wu, M. H.; Wang, J. H.; Liu, C.; Shang, N. Z.; Wang, J. X.; Gao, P.; Yu, D. P. et al. Identification of copper surface index by optical contrast. Adv. Mater. Interfaces, 2018, 5, 1800377.CrossRefGoogle Scholar
  35. [35]
    Wang, H. Z.; Leong, W. S.; Hu, F. T.; Ju, L. L.; Su, C.; Guo, Y. K.; Li, J.; Li, M.; Hu, A. M.; Kong, J. Low-temperature copper bonding strategy with graphene interlayer. ACS Nano, 2018, 12, 2395–2402.CrossRefGoogle Scholar
  36. [36]
    Matthews, J. W. Epitaxial Growth. Elsevier: Amsterdam, 1975.Google Scholar
  37. [37]
    Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv Mater, 2018, 30, 1702944.CrossRefGoogle Scholar
  38. [38]
    Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys Rev Lett, 2008, 101, 026803.CrossRefGoogle Scholar
  39. [39]
    Hölzl, J.; Schulte, F. K.; Wagner, H. Solid Surface Physics. Springer: Berlin, 1979.CrossRefGoogle Scholar
  40. [40]
    Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lin, H. Q.; Ho, K. M.; Tringides, M. C. Metals on graphene: Interactions, growth morphology, and thermal stability. Crystals, 2013, 3, 79–111.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhihong Zhang
    • 1
    • 2
  • Xiaozhi Xu
    • 1
    • 3
  • Ruixi Qiao
    • 1
  • Junjiang Liu
    • 4
  • Yuxia Feng
    • 1
  • Zhibin Zhang
    • 1
  • Peizhao Song
    • 1
  • Muhong Wu
    • 1
    • 5
  • Lan Zhu
    • 6
  • Xuelin Yang
    • 1
  • Peng Gao
    • 1
  • Lei Liu
    • 4
  • Jie Xiong
    • 7
  • Enge Wang
    • 1
    • 2
    • 5
  • Kaihui Liu
    • 1
    Email author
  1. 1.State Key Laboratory for Mesoscopic Physics, International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, School of Physics, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  2. 2.Physical Science LaboratoryHuairou National Comprehensive Science CentreBeijingChina
  3. 3.School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina
  4. 4.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  5. 5.Songshan Lake Materials Laboratory, Institute of PhysicsChinese Academy of SciencesGuangdongChina
  6. 6.Peking Union Medical College HospitalBeijingChina
  7. 7.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations