Spherical to truncated octahedral shape transformation of palladium nanocrystals driven by e-beam in aqueous solution

  • Yingying JiangEmail author
  • Xiao Li
  • Xiaoming Ma
  • Haifeng Wang
  • Hui Zhang
  • Zheng Liu
  • Ze Zhang
  • Chuanhong JinEmail author
Research Article


The crystallographic shapes of nanocrystals play critical roles in determining their physical and chemical properties. Liquid phase synthesis serves as one of the most important approaches for preparing shape-controlled nanocrystals, therefore, understanding the formation mechanisms of the thermodynamic equilibrium structures of nanocrystals in liquid solution is important. Using in situ liquid cell transmission electron microscopy (TEM), we observe for the first time the shape transformation of individual palladium nanocrystals from energy unfavored spherical shapes into equilibrium truncated octahedrons in aqueous solution. Via quantitative analysis of the shape evolution dynamics of an individual Pd nanocrystal, we find that about 10% of nanocrystal atoms were relocated during the shape transformation. The mass transport is attributed to the synergetic effect of electron beam irradiation and water environment.


equilibrium shape Pd nanocrystals shape transformation dynamics liquid cell TEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51772265, 51761165024, and 61721005), the National Basic Research Program of China (No. 2015CB921004), the Zhejiang Provincial Nature Science Foundation (No. D19E020002), and the 111 project (No. B16042). Y. Y. J. acknowledges the support of the National Postdoctoral Program for Innovative Talents (No. BX201700208). This work made use of the resources of the Center of Electron Microscopy of Zhejiang University.

Supplementary material

12274_2019_2498_MOESM1_ESM.avi (11.9 mb)
Supplementary material, approximately 228 KB.
12274_2019_2498_MOESM2_ESM.avi (18.5 mb)
Supplementary material, approximately 228 KB.
12274_2019_2498_MOESM3_ESM.avi (16.3 mb)
Supplementary material, approximately 228 KB.
12274_2019_2498_MOESM4_ESM.pdf (3.7 mb)
Spherical to truncated octahedral shape transformation of palladium nanocrystals driven by e-beam in aqueous solution


  1. [1]
    Leenders, S. H. A. M.; Gramage-Doria, R.; De Bruin, B.; Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 2015, 44, 433–448.CrossRefGoogle Scholar
  2. [2]
    Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.CrossRefGoogle Scholar
  3. [3]
    Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefGoogle Scholar
  4. [4]
    Vendelbo, S. B.; Elkjær, C. F.; Falsig, H.; Puspitasari, I.; Dona, P.; Mele, L.; Morana, B.; Nelissen, B. J.; Van Rijn, R.; Creemer, J. F. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 2014, 13, 884–890.CrossRefGoogle Scholar
  5. [5]
    Tao, F. F.; Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 2011, 331, 171–174.CrossRefGoogle Scholar
  6. [6]
    Zhang, D. J.; Jin, C. H.; Li, Z. Y.; Zhang, Z.; Li, J. X. Oxidation behavior of cobalt nanoparticles studied by In situ environmental transmission electron microscopy. Sci. Bull. 2017, 62, 775–778.CrossRefGoogle Scholar
  7. [7]
    Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.CrossRefGoogle Scholar
  8. [8]
    Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.CrossRefGoogle Scholar
  9. [9]
    Zhang, J.; Li, S. Z.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Plasmon-mediated synthesis of silver triangular bipyramids. Angew. Chem., Int. Ed. 2009, 48, 7787–7791.CrossRefGoogle Scholar
  10. [10]
    Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.CrossRefGoogle Scholar
  11. [11]
    Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.CrossRefGoogle Scholar
  12. [12]
    Jiang, Y. Y.; Zhu, G. M.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 2014, 14, 3761–3765.CrossRefGoogle Scholar
  13. [13]
    Tan, S. F.; Lin, G. H.; Bosman, M.; Mirsaidov, U.; Nijhuis, C. A. Realtime dynamics of galvanic replacement reactions of silver nanocubes and Au studied by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 7689–7695.CrossRefGoogle Scholar
  14. [14]
    Ye, X. C.; Jones, M. R.; Frechette, L. B.; Chen, Q.; Powers, A. S.; Ercius, P.; Dunn, G.; Rotskoff, G. M.; Nguyen, S. C.; Adiga, V. P. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 2016, 354, 874–877.CrossRefGoogle Scholar
  15. [15]
    Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.CrossRefGoogle Scholar
  16. [16]
    De Jonge, N.; Peckys, D. B.; Kremers, G. J.; Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA 2009, 106, 2159–2164.CrossRefGoogle Scholar
  17. [17]
    Sutter, E. A.; Sutter, P. W. Determination of redox reaction rates and orders by In situ liquid cell electron microscopy of Pd and Au solution growth. J. Am. Chem. Soc. 2014, 136, 16865–16870.CrossRefGoogle Scholar
  18. [18]
    Zhu, B. E.; Xu, Z.; Wang, C. L.; Gao, Y. Shape evolution of metal nanoparticles in water vapor environment. Nano Lett. 2016, 16, 2628–2632.CrossRefGoogle Scholar
  19. [19]
    Ringe, E.; Van Duyne, R. P.; Marks, L. D. Wulff construction for alloy nanoparticles. Nano Lett. 2011, 11, 3399–3403.CrossRefGoogle Scholar
  20. [20]
    Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.CrossRefGoogle Scholar
  21. [21]
    Galanakis, I.; Papanikolaou, N.; Dederichs, P. H. Applicability of the broken-bond rule to the surface energy of the fcc metals. Surf. Sci. 2002, 511, 1–12.CrossRefGoogle Scholar
  22. [22]
    Zhang, J. M.; Ma, F.; Xu, K. W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004, 229, 34–42.CrossRefGoogle Scholar
  23. [23]
    Egerton, R. F.; McLeod, R.; Wang, F.; Malac, M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 2010, 110, 991–997.CrossRefGoogle Scholar
  24. [24]
    Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.CrossRefGoogle Scholar
  25. [25]
    Gao, W. P.; Hou, Y. S.; Hood, Z. D.; Wang, X.; More, K.; Wu, R. Q.; Xia, Y. N.; Pan, X. Q.; Chi, M. F. Direct In situ observation and analysis of the formation of palladium nanocrystals with high-index facets. Nano Lett. 2018, 18, 7004–7013.CrossRefGoogle Scholar
  26. [26]
    Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am. Chem. Soc. 2013, 135, 11752–11755.CrossRefGoogle Scholar
  27. [27]
    Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yingying Jiang
    • 1
    • 2
    Email author
  • Xiao Li
    • 1
  • Xiaoming Ma
    • 1
  • Haifeng Wang
    • 1
  • Hui Zhang
    • 1
  • Zheng Liu
    • 3
  • Ze Zhang
    • 1
  • Chuanhong Jin
    • 1
    Email author
  1. 1.State Key Laboratory of Silicon MaterialsSchool of Materials Science and Engineering, Zhejiang UniversityHangzhouChina
  2. 2.Department of ChemistryZhejiang UniversityHangzhouChina
  3. 3.Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations