Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene

  • Junfeng Wen
  • Yuanjun Chen
  • Shufang JiEmail author
  • Jian Zhang
  • Dingsheng Wang
  • Yadong LiEmail author
Research Article


Here, we successfully developed nanostructured PtNi particles supported on nitrogen-doped carbon (NC), which were obtained by carbonization of metal-organic frameworks under different temperatures, forming the nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 and nano-PtNi/NC-1000 catalysts. For hydrosilylation of 1-octene, we found that the nano-PtNi/NC-1000 catalyst exhibits higher activity for anti-Markovnikov hydrosilylation of 1-octene than those of nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 catalysts. Experiments have verified that benefiting from obvious charge transfer from nano-PtNi particles to NC support carbonized at 1,000 °C, the nano-PtNi/NC-1000 catalyst achieved almost complete conversion and produce exclusive adduct for anti-Markovnikov hydrosilylation of 1-octene. Importantly, the nano-PtNi/NC-1000 catalyst exhibited good reusability for the hydrosilylation reaction. This work provides a new path to optimize electronic structure of catalysts by support modification to enhance electron transfer between metal active species and supports for highly catalytic performance.


metal-organic frameworks nanostructured PtNi particles hydrosilylation nitrogen-doped carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Postdoctoral Program for Innovative Talents (No. BX20180160), the China Postdoctoral Science Foundation (No. 2018M640113), the National Natural Science Foundation of China (No. 21890383) and the Industrial Science and Technology Tackling Program of Shaanxi Province (No. 2016GY-245).

Supplementary material

12274_2019_2490_MOESM1_ESM.pdf (1.8 mb)
Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene


  1. [1]
    Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.CrossRefGoogle Scholar
  2. [2]
    Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.CrossRefGoogle Scholar
  3. [3]
    Li, Q.; Ji, S. F.; Li, M. F.; Duan, X. F. Pt-Ni alloy catalysts for highly selective anti-Markovnikov alkene hydrosilylation. Sci. China Mater. 2018, 61, 1339–1344.CrossRefGoogle Scholar
  4. [4]
    Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 2015, 137, 13244–13247.CrossRefGoogle Scholar
  5. [5]
    Galeandro-Diamant, T.; Sayah, R.; Zanota, M. L.; Marrot, S.; Veyre, L.; Thieuleux, C.; Meille, V. Pt nanoparticles immobilized in mesostructured silica: A non-leaching catalyst for 1-octene hydrosilylation. Chem. Commun. 2017, 53, 2962–2965.CrossRefGoogle Scholar
  6. [6]
    Glaser, P. B.; Tilley, T. D. Catalytic hydrosilylation of alkenes by a ruthenium silylene complex. Evidence for a new hydrosilylation mechanism. J. Am. Chem. Soc. 2003, 125, 13640–13641.Google Scholar
  7. [7]
    Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206.CrossRefGoogle Scholar
  8. [8]
    Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group viii metal catalysts. J. Am. Chem. Soc. 1957, 79, 974–979.CrossRefGoogle Scholar
  9. [9]
    Stein, J.; Lewis, L. N.; Gao, Y.; Scott, R. A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 1999, 121, 3693–3703.CrossRefGoogle Scholar
  10. [10]
    Roy, A. K. A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv. Organomet. Chem. 2007, 55, 1–59.CrossRefGoogle Scholar
  11. [11]
    Roy, A. K.; Taylor, R. B. The first alkene-platinum-silyl complexes: Lifting the hydrosilation mechanism shroud with long-lived precatalytic intermediates and true Pt catalysts. J. Am. Chem. Soc. 2002, 124, 9510–9524.CrossRefGoogle Scholar
  12. [12]
    Ciriminna, R.; Pandarus, V.; Gingras, G.; Béland, F.; Pagliaro, M. Closing the organosilicon synthetic cycle: Efficient heterogeneous hydrosilylation of alkenes over siliaCat Pt(0). ACS Sustainable Chem. Eng. 2013, 1, 249–253.CrossRefGoogle Scholar
  13. [13]
    Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Yus, M. Hydrosilylation of alkynes catalysed by platinum on titania. J. Organomet. Chem. 2011, 696, 368–372.CrossRefGoogle Scholar
  14. [14]
    Marshall, S. T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853–858.CrossRefGoogle Scholar
  15. [15]
    Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.CrossRefGoogle Scholar
  16. [16]
    Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.CrossRefGoogle Scholar
  17. [17]
    Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.CrossRefGoogle Scholar
  18. [18]
    Gross, E.; Somorjai, G. A. The impact of electronic charge on catalytic reactivity and selectivity of metal-oxide supported metallic nanoparticles. Top. Catal. 2013, 56, 1049–1058.CrossRefGoogle Scholar
  19. [19]
    Cui, X. J.; Surkus, A. E.; Junge, K.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Beller, M. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix. Nat. Commun. 2016, 7, 11326.CrossRefGoogle Scholar
  20. [20]
    Wang, H. L.; Zhu, Q. L.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52–80.CrossRefGoogle Scholar
  21. [21]
    Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.CrossRefGoogle Scholar
  22. [22]
    Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.CrossRefGoogle Scholar
  23. [23]
    Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.CrossRefGoogle Scholar
  24. [24]
    He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217–7223.CrossRefGoogle Scholar
  25. [25]
    Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.CrossRefGoogle Scholar
  26. [26]
    Zhang, S. L.; Han, A. J.; Zhai, Y. L.; Zhang, J.; Cheong, W. C.; Wang, D. S.; Li, Y. D. ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: Sintering- and leaching-resistant core-shell nanocatalysts. Chem. Commun. 2017, 53, 9490–9493.CrossRefGoogle Scholar
  27. [27]
    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.CrossRefGoogle Scholar
  28. [28]
    Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.CrossRefGoogle Scholar
  29. [29]
    Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.CrossRefGoogle Scholar
  30. [30]
    Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.CrossRefGoogle Scholar
  31. [31]
    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.CrossRefGoogle Scholar
  32. [32]
    Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res., in press, DOI:
  33. [33]
    Zhang, H.; Liu, X. M.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J. Mof-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives. Chem. Commun. 2018, 54, 5268–5288.CrossRefGoogle Scholar
  34. [34]
    Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472–3479.CrossRefGoogle Scholar
  35. [35]
    Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544–2552.CrossRefGoogle Scholar
  36. [36]
    Qi, Z. Y.; Pei, Y. C.; Goh, T. W.; Wang, Z. Y.; Li, X. L.; Lowe, M.; Maligal-Ganes, R. V.; Huang, W. Y. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Res. 2018, 11, 3469–3479.CrossRefGoogle Scholar
  37. [37]
    Cui, Y. J.; Li, B.; He, H. J.; Zhou, W.; Chen, B. L.; Qian, G. D. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493.CrossRefGoogle Scholar
  38. [38]
    Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857.CrossRefGoogle Scholar
  39. [39]
    Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.CrossRefGoogle Scholar
  40. [40]
    Guo, Z.; Chen, Y. T.; Li, L. S.; Wang, X. M.; Haller, G. L.; Yang, Y. H. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J. Catal. 2010, 276, 314–326.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of chemistry and chemical engineeringYulin UniversityYulinChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations