Nano Research

, Volume 12, Issue 11, pp 2655–2694 | Cite as

A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives

  • Rajesh KumarEmail author
  • Sumanta Sahoo
  • Ednan Joanni
  • Rajesh Kumar Singh
  • Ram Manohar Yadav
  • Rajiv Kumar Verma
  • Dinesh Pratap Singh
  • Wai Kian Tan
  • Angel Pérez del Pino
  • Stanislav A. Moshkalev
  • Atsunori MatsudaEmail author
Review Article


The significance of graphene and its two-dimensional (2D) analogous inorganic layered materials especially as hexagonal boron nitride (h-BN) and molybdenum disulphide (MoS2) for “clean energy” applications became apparent over the last few years due to their extraordinary properties. In this review article we study the current progress and selected challenges in the syntheses of graphene, h-BN and MoS2 including energy storage applications as supercapacitors and batteries. Various substrates/catalysts (metals/insulator/semiconducting) have been used to obtain graphene, h-BN and MoS2 using different kinds of precursors. The most widespread methods for synthesis of graphene, h-BN and MoS2 layers are chemical vapor deposition (CVD), plasma-enhanced CVD, hydro/solvothermal methods, liquid phase exfoliation, physical methods etc. Current research has shown that graphene, h-BN and MoS2 layered materials modified with metal oxide can have an insightful influence on the performance of energy storage devices as supercapacitors and batteries. This review article also contains the discussion on the opportunities and perspectives of these materials (graphene, h-BN and MoS2) in the energy storage fields. We expect that this written review article including recent research on energy storage will help in generating new insights for further development and practical applications of graphene, h-BN and MoS2 layers based materials.


graphene inorganic layered materials hierarchical structures energy storage supercapacitor battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



R. K. acknowledges Japan Society for the Promotion of Science (JSPS; Standard) for international postdoctoral fellowship (P18063) and this research work was supported by JSPS KAKENHI Grant No. 18F18063. A. M. acknowledges the financial support from JSPS KAKENHI Grant JP-18H03841 and JSPS KAKENHI Grant JP-17K18985. R. K. and A. M. would like to thanks Toyohashi University of Technology, Toyohashi, Aichi, Japan for providing the necessarily support and facilities to complete this work. S. S. acknowledges DST-SERB, India for the national postdoctoral fellowship (NPDF File No. PDF/2017/000328). D. P. S. acknowledges with gratitude the financial support from Millennium Institute for Research in Optics (MIRO), CHILE. R. K. would like to dedicate this work to the memory of late Prof. Yoshiyuki Suda.


  1. [1]
    Kumar, R.; Joanni, E.; Singh, R. K.; Singh, D. P.; Moshkalev, S. A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci.2018, 67, 115–157.Google Scholar
  2. [2]
    Kumar, R.; Singh, R. K.; Singh, D. P.; Joanni, E.; Yadav, R. M.; Moshkalev, S. A. Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications. Coord. Chem. Rev.2017, 342, 34–79.Google Scholar
  3. [3]
    Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale2011, 3, 20–30.Google Scholar
  4. [4]
    Singh, R. K.; Kumar, R.; Singh, D. P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011.Google Scholar
  5. [5]
    Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev.2018, 118, 6189–6235.Google Scholar
  6. [6]
    Singh, D. P.; Herrera, C. E.; Singh, B.; Singh, S.; Singh, R. K.; Kumar, R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C2018, 86, 173–197.Google Scholar
  7. [7]
    Kumar, R.; Singh, R. K.; Singh, D. P. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renew. Sustain. Energy Rev.2016, 58, 976–1006.Google Scholar
  8. [8]
    Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev.2018, 118, 6236–6296.Google Scholar
  9. [9]
    Liu, H. H.; Li, M. P.; Kaner, R. B.; Chen, S. Y.; Pei, Q. B. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Appl. Mater. Interfaces2018, 10, 15609–15615.Google Scholar
  10. [10]
    Arramel; Wang, Q.; Zheng, Y.; Zhang, W.; Wee, A. T. S. Towards molecular doping effect on the electronic properties of two-dimensional layered materials. J. Phys. Conf. Ser.2016, 739, 012014.Google Scholar
  11. [11]
    Guan, Z. Y.; Lian, C. S.; Hu, S. L.; Ni, S.; Li, J.; Duan, W. H. Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material. J. Phys. Chem. C2017, 121, 3654–3660.Google Scholar
  12. [12]
    Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano2014, 8, 4133–4156.Google Scholar
  13. [13]
    Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev.2018, 375, 489–513.Google Scholar
  14. [14]
    Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev.2018, 47, 3265–3300.Google Scholar
  15. [15]
    Kumar, R.; Savu, R.; Joanni, E.; Vaz, A. R.; Canesqui, M. A.; Singh, R. K.; Timm, R. A.; Kubota, L. T.; Moshkalev, S. A. Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Adv. 2016, 6, 84769–84776.Google Scholar
  16. [16]
    Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Graphene oxide: A promising membrane material for fuel cells. Renew. Sustain. Energy Rev.2018, 82, 714–733.Google Scholar
  17. [17]
    Kumar, R.; Joanni, E.; Singh, R. K.; da Silva, E. T. S. G.; Savu, R.; Kubota, L. T.; Moshkalev, S. A. Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J. Colloid Interface Sci.2017, 507, 271–278.Google Scholar
  18. [18]
    Irani, R.; Naseri, N.; Beke, S. A review of 2D-based counter electrodes applied in solar-assisted devices. Coord. Chem. Rev.2016, 324, 54–81.Google Scholar
  19. [19]
    Yadav, S. K.; Kumar, R.; Sundramoorthy, A. K.; Singh, R. K.; Koo, C. M. Simultaneous reduction and covalent grafting of polythiophene on graphene oxide sheets for excellent capacitance retention. RSC Adv.2016, 6, 52945–52949.Google Scholar
  20. [20]
    Shuvo, M. A. I.; Khan, M. A. R.; Karim, H.; Morton, P.; Wilson, T.; Lin, Y. R. Investigation of modified graphene for energy storage applications. ACS Appl. Mater. Interfaces2013, 5, 7881–7885.Google Scholar
  21. [21]
    Lee, S. K.; Rana, K.; Ahn, J. H. Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett.2013, 4, 831–841.Google Scholar
  22. [22]
    Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano2017, 11, 8790–8795.Google Scholar
  23. [23]
    Zhu, J.; Ha, E. N.; Zhao, G. L.; Zhou, Y.; Huang, D. S.; Yue, G. Z.; Hu, L. S.; Sun, N.; Wang, Y.; Lee, L. Y. S. et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev.2017, 352, 306–327.Google Scholar
  24. [24]
    Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J. H.; Ahn, J. H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano2017, 11, 7950–7957.Google Scholar
  25. [25]
    Rosli, N. N.; Ibrahim, M. A.; Ahmad Ludin, N.; Mat Teridi, M. A.; Sopian, K. A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev.2019, 99, 83–99.Google Scholar
  26. [26]
    Ghawanmeh, A. A.; Ali, G. A. M.; Algarni, H.; Sarkar, S. M.; Chong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019, 12, 973–990.Google Scholar
  27. [27]
    Bulusheva, L. G.; Koroteev, V. O.; Stolyarova, S. G.; Chuvilin, A. L.; Plyusnin, P. E.; Shubin, Y. V.; Vilkov, O. Y.; Chen, X. H.; Song, H. H.; Okotrub, A. V. Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Electrochim. Acta2018, 283, 45–53.Google Scholar
  28. [28]
    Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano2015, 9, 7343–7351.Google Scholar
  29. [29]
    Zhang, H. Introduction: 2D materials chemistry. Chem. Rev.2018, 118, 6089–6090.Google Scholar
  30. [30]
    Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672.Google Scholar
  31. [31]
    Wang, P.; Jiang, T. F.; Zhu, C. Z.; Zhai, Y. M.; Wang, D. J.; Dong, S. J. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res. 2010, 3, 794–799.Google Scholar
  32. [32]
    He, Z. L.; Que, W. X. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today2016, 3, 23–56.Google Scholar
  33. [33]
    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics2014, 8, 899–907.Google Scholar
  34. [34]
    Xia, W. S.; Dai, L. P.; Yu, P.; Tong, X.; Song, W. P.; Zhang, G. J.; Wang, Z. M. Recent progress in van der Waals heterojunctions. Nanoscale2017, 9, 4324–4365.Google Scholar
  35. [35]
    Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics2016, 10, 227–238.Google Scholar
  36. [36]
    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics2010, 4, 611–622.Google Scholar
  37. [37]
    Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale2015, 7, 4598–4810.Google Scholar
  38. [38]
    Samaddar, P.; Son, Y. S.; Tsang, D. C. W.; Kim, K. H.; Kumar, S. Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev.2018, 368, 93–114.Google Scholar
  39. [39]
    Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metalorganic composites. Coord. Chem. Rev.2019, 387, 262–272.Google Scholar
  40. [40]
    Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.Google Scholar
  41. [41]
    Kumar, R.; Yadav, R. M.; Awasthi, K.; Shripathi, T.; Sinha, A. S. K.; Tiwari, R. S.; Srivastava, O. N. Synthesis of carbon and carbon-nitrogen nanotubes using green precursor: Jatropha-derived biodiesel. J. Exp. Nanosci.2013, 8, 606–620.Google Scholar
  42. [42]
    Kumar, R.; Dubey, P. K.; Singh, R. K.; Vaz, A. R.; Moshkalev, S. A. Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide-graphene nanosheet hybrid structure with enhanced optical properties. RSC Adv. 2016, 6, 17669–17677.Google Scholar
  43. [43]
    Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.Google Scholar
  44. [44]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.Google Scholar
  45. [45]
    Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331–1340.Google Scholar
  46. [46]
    Mahanta, N. K.; Abramson, A. R. Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 2012, pp 1–6.Google Scholar
  47. [47]
    Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109–6114.Google Scholar
  48. [48]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science2008, 321, 385–388.Google Scholar
  49. [49]
    Androulidakis, C.; Zhang, K. H.; Robertson, M.; Tawfick, S. Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater. 2018, 5, 032005.Google Scholar
  50. [50]
    Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol.2008, 3, 206–209.Google Scholar
  51. [51]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.Google Scholar
  52. [52]
    Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. Graphene analogues of BN: Novel synthesis and properties. ACS Nano2010, 4, 1539–1544.Google Scholar
  53. [53]
    Topsakal, M.; Aktürk, E.; Ciraci, S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B2009, 79, 115442.Google Scholar
  54. [54]
    Peng, Q.; Ji, W.; De, S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci.2012, 56, 11–17.Google Scholar
  55. [55]
    Hernández, E.; Goze, C.; Bernier, P.; Rubio, A. Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett.1998, 80, 4502–4505.Google Scholar
  56. [56]
    Suryavanshi, A. P.; Yu, M. F.; Wen, J. G.; Tang, C. C.; Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett.2004, 84, 2527–2529.Google Scholar
  57. [57]
    Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett.2001, 87, 215502.Google Scholar
  58. [58]
    Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater.2004, 3, 404–409.Google Scholar
  59. [59]
    Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A Appl. Sci. Manuf.2006, 37, 727–734.Google Scholar
  60. [60]
    Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater.2009, 21, 2889–2893.Google Scholar
  61. [61]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.Google Scholar
  62. [62]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.Google Scholar
  63. [63]
    Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C2007, 111, 16192–16196.Google Scholar
  64. [64]
    Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B2009, 79, 115409.Google Scholar
  65. [65]
    Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C2014, 118, 1515–1522.Google Scholar
  66. [66]
    Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects.Appl. Phys. Lett.2013, 102, 042104.Google Scholar
  67. [67]
    Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.Google Scholar
  68. [68]
    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.Google Scholar
  69. [69]
    Zhang, Q.; Jie, J. S.; Diao, S. L.; Shao, Z. B.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W. D.; Xia, H.; Yuan, X. D. et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano2015, 9, 1561–1570.Google Scholar
  70. [70]
    Cheng, H. H.; Zhao, Y.; Fan, Y. Q.; Xie, X. J.; Qu, L. T.; Shi, G. Q. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano2012, 6, 2237–2244.Google Scholar
  71. [71]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.Google Scholar
  72. [72]
    Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.Google Scholar
  73. [73]
    Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci.2014, 7, 209–231.Google Scholar
  74. [74]
    Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomiclayer MoS2 for energy conversion and piezotronics. Nature2014, 514, 470–474.Google Scholar
  75. [75]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors.Nat. Nanotechnol.2011, 6, 147–150.Google Scholar
  76. [76]
    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol.2012, 7, 494–498.Google Scholar
  77. [77]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol.2012, 7, 490–493.Google Scholar
  78. [78]
    Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun.2012, 3, 887.Google Scholar
  79. [79]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater.2013, 12, 207–211.Google Scholar
  80. [80]
    Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater.2011, 10, 424–428.Google Scholar
  81. [81]
    Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev.2018, 118, 6091–6133.Google Scholar
  82. [82]
    Gao, L. B.; Ren, W. C.; Zhao, J. P.; Ma, L. P.; Chen, Z. P.; Cheng, H. M. Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl. Phys. Lett.2010, 97, 183109.Google Scholar
  83. [83]
    Gan, X. R.; Zhao, H. M.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens. Bioelectron.2017, 89, 56–71.Google Scholar
  84. [84]
    Ma, L. P.; Ren, W. C.; Dong, Z. L.; Liu, L. Q.; Cheng, H. M. Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Chin. Sci. Bull.2012, 57, 2995–2999.Google Scholar
  85. [85]
    Serp, P.; Kalck, P.; Feurer, R. Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem. Rev.2002, 102, 3085–3128.Google Scholar
  86. [86]
    Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev.2015, 44, 2744–2756.Google Scholar
  87. [87]
    Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc.2013, 135, 10274–10277.Google Scholar
  88. [88]
    Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc.2013, 135, 5304–5307.Google Scholar
  89. [89]
    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small2012, 8, 966–971.Google Scholar
  90. [90]
    Li, X. L.; Ge, J. P.; Li, Y. D. Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem.—Eur. J.2004, 10, 6163–6171.Google Scholar
  91. [91]
    Etzkorn, J.; Therese, H. A.; Rocker, F.; Zink, N.; Kolb, U.; Tremel, W. Metal-organic chemical vapor depostion synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Adv. Mater.2005, 17, 2372–2375.Google Scholar
  92. [92]
    Lee, W. Y.; Besmann, T. M.; Stott, M. W. Preparation of MoS2 thin films by chemical vapor deposition. J. Mater. Res.1994, 9, 1474–1483.Google Scholar
  93. [93]
    Sun, Y. Y.; Zhang, W. H.; Chi, H. J.; Liu, Y. Q.; Hou, C. L.; Fang, D. N. Recent development of graphene materials applied in polymer solar cell. Renew. Sustain. Energy Rev.2015, 43, 973–980.Google Scholar
  94. [94]
    Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823–827.Google Scholar
  95. [95]
    Edwards, R. S.; Coleman, K. S. Graphene film growth on polycrystalline metals.Acc. Chem. Res.2013, 46, 23–30.Google Scholar
  96. [96]
    Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D. S.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano2018, 12, 6117–6127.Google Scholar
  97. [97]
    Eom, D.; Prezzi, D.; Rim, K. T.; Zhou, H.; Lefenfeld, M.; Xiao, S. X.; Nuckolls, C.; Hybertsen, M. S.; Heinz, T. F.; Flynn, G. W. Structure and electronic properties of graphene nanoislands on Co(0001). Nano Lett. 2009, 9, 2844–2848.Google Scholar
  98. [98]
    Kondo, D.; Yagi, K.; Sato, M.; Nihei, M.; Awano, Y.; Sato, S.; Yokoyama, N. Selective synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness. Chem. Phys. Lett.2011, 514, 294–300.Google Scholar
  99. [99]
    Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. W. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano2010, 4, 2865–2873.Google Scholar
  100. [100]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.Google Scholar
  101. [101]
    Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces.Nano Res. 2009, 2, 509–516.Google Scholar
  102. [102]
    Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett.2010, 1, 3101–3107.Google Scholar
  103. [103]
    Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P. L.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology2010, 21, 015601.Google Scholar
  104. [104]
    Chae, S. J.; Güneş, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation.Adv. Mater.2009, 21, 2328–2333.Google Scholar
  105. [105]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano2010, 4, 1321–1326.Google Scholar
  106. [106]
    Takahashi, K.; Yamada, K.; Kato, H.; Hibino, H.; Homma, Y. In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surf. Sci.2012, 606, 728–732.Google Scholar
  107. [107]
    Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon2011, 49, 4204–4210.Google Scholar
  108. [108]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of highquality and uniform graphene films on copper foils. Science2009, 324, 1312–1314.Google Scholar
  109. [109]
    Zhang, F.; Cao, H. Q.; Yue, D. M.; Zhang, J. X.; Qu, M. Z. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 2012, 51, 9544–9551.Google Scholar
  110. [110]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol.2010, 5, 574–578.Google Scholar
  111. [111]
    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.Google Scholar
  112. [112]
    Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper.J. Mater. Chem.2011, 21, 3324–3334.Google Scholar
  113. [113]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.Google Scholar
  114. [114]
    Luo, Z. T.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater.2011, 23, 1441–1447.Google Scholar
  115. [115]
    Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.Google Scholar
  116. [116]
    Vo-Van, C.; Kimouche, A.; Reserbat-Plantey, A.; Fruchart, O.; Bayle-Guillemaud, P.; Bendiab, N.; Coraux, J. Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl. Phys. Lett.2011, 98, 181903.Google Scholar
  117. [117]
    Ramón, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D. et al. Cmos-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano2011, 5, 7198–7204.Google Scholar
  118. [118]
    Cushing, G. W.; Johánek, V.; Navin, J. K.; Harrison, I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C2015, 119, 4759–4768.Google Scholar
  119. [119]
    Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett.2011, 98, 033101.Google Scholar
  120. [120]
    Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction.Phys. Rev. B2009, 80, 245411.Google Scholar
  121. [121]
    Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang, Y. F.; Liu, Z. F. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition. ACS Nano2011, 5, 9194–9201.Google Scholar
  122. [122]
    Kang, B. J.; Mun, J. H.; Hwang, C. Y.; Cho, B. J. Monolayer graphene growth on sputtered thin film platinum. J. Appl. Phys.2009, 106, 104309.Google Scholar
  123. [123]
    Imamura, G.; Saiki, K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. J. Phys. Chem. C2011, 115, 10000–10005.Google Scholar
  124. [124]
    Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C. Synthesis of graphene on gold. Appl. Phys. Lett.2011, 98, 183101.Google Scholar
  125. [125]
    He, D. Y.; Zhang, P.; Li, S. H.; Luo, H. X. A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and L-cysteine for the selective determination of epinephrine.J. Electroanal. Chem.2018, 823, 678–687.Google Scholar
  126. [126]
    Gao, J. H.; Ishida, N.; Scott, I.; Fujita, D. Controllable growth of single-layer graphene on a Pd(111) substrate. Carbon2012, 50, 1674–1680.Google Scholar
  127. [127]
    Di Gaspare, L.; Scaparro, A. M.; Fanfoni, M.; Fazi, L.; Sgarlata, A.; Notargiacomo, A.; Miseikis, V.; Coletti, C.; De Seta, M. Early stage of CVD graphene synthesis on Ge(001) substrate. Carbon2018, 134, 183–188.Google Scholar
  128. [128]
    Tonnoir, C.; Kimouche, A.; Coraux, J.; Magaud, L.; Delsol, B.; Gilles, B.; Chapelier, C. Induced superconductivity in graphene grown on rhenium. Phys. Rev. Lett.2013, 111, 246805.Google Scholar
  129. [129]
    Rut’kov, E. V.; Kuz’michev, A. V.; Gall’, N. R. Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers. Phys. Solid State2011, 53, 1092–1098.Google Scholar
  130. [130]
    Liu, L.; Zhou, Z. H.; Guo, Q. L.; Yan, Z.; Yao, Y. X.; Goodman, D. W. The 2D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surf. Sci.2011, 605, L47–L50.Google Scholar
  131. [131]
    Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.Google Scholar
  132. [132]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium.Nat. Mater.2008, 7, 406–411.Google Scholar
  133. [133]
    Vázquez de Parga, A. L.; Calleja, F.; Borca, B.; Passeggi, M. C. G. Jr.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett.2008, 100, 056807.Google Scholar
  134. [134]
    N’Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys.2008, 10, 043033.Google Scholar
  135. [135]
    Negishi, R.; Hirano, H.; Ohno, Y.; Maehashi, K.; Matsumoto, K.; Kobayashi, Y. Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films2011, 519, 6447–6452.Google Scholar
  136. [136]
    Wang, S. M.; Pei, Y. H.; Wang, X.; Wang, H.; Meng, Q. N.; Tian, H. W.; Zheng, X. L.; Zheng, W. T.; Liu, Y. C. Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition. J. Phys. D Appl. Phys.2010, 43, 455402.Google Scholar
  137. [137]
    Zhan, N.; Wang, G. P.; Liu, J. L. Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy. Appl. Phys. A2011, 105, 341–345.Google Scholar
  138. [138]
    Yazici, M. S.; Azder, M. A.; Salihoglu, O. CVD grown graphene as catalyst for acid electrolytes. Int. J. Hydrog. Energy2018, 43, 10710–10716.Google Scholar
  139. [139]
    Tu, R.; Liang, Y.; Zhang, C.; Li, J.; Zhang, S.; Yang, M. J.; Li, Q. Z.; Goto, T.; Zhang, L. M.; Shi, J. et al. Fast synthesis of high-quality large-area graphene by laser CVD. Appl. Surf. Sci.2018, 445, 204–210.Google Scholar
  140. [140]
    Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.Google Scholar
  141. [141]
    Lu, Y. F.; Lo, S. T.; Lin, J. C.; Zhang, W. J.; Lu, J. Y.; Liu, F. H.; Tseng, C. M.; Lee, Y. H.; Liang, C. T.; Li, L. J. Nitrogen-doped graphene sheets grown by chemical vapor deposition: Synthesis and influence of nitrogen impurities on carrier transport. ACS Nano2013, 7, 6522–6532.Google Scholar
  142. [142]
    Mondal, T.; Bhowmick, A. K.; Krishnamoorti, R. Controlled synthesis of nitrogen-doped graphene from a heteroatom polymer and its mechanism of formation. Chem. Mater.2015, 27, 716–725.Google Scholar
  143. [143]
    Zhang, Y. H.; Chen, Z. Y.; Ge, X. M.; Liang, Y. J.; Hu, S. K.; Sui, Y. P.; Yu, G. H. A waterless cleaning method of the Cu foil for CVD graphene growth. Mater. Lett.2018, 211, 258–260.Google Scholar
  144. [144]
    De Luca, O.; Grillo, R.; Castriota, M.; Policicchio, A.; Penelope De Santo, M.; Desiderio, G.; Fasanella, A.; Giuseppe Agostino, R.; Cazzanelli, E.; Giarola, M. et al. Different spectroscopic behavior of coupled and freestanding monolayer graphene deposited by CVD on Cu foil. Appl. Surf. Sci.2018, 458, 580–585.Google Scholar
  145. [145]
    Hui, L. S.; Whiteway, E.; Hilke, M.; Turak, A. Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. Carbon2017, 125, 500–508.Google Scholar
  146. [146]
    Limbu, T. B.; Hernández, J. C.; Mendoza, F.; Katiyar, R. K.; Razink, J. J.; Makarov, V. I.; Weiner, B. R.; Morell, G. A novel approach to the layer-number-controlled and grain-size-controlled growth of high quality graphene for nanoelectronics. ACS Appl. Nano Mater.2018, 1, 1502–1512.Google Scholar
  147. [147]
    Choi, J. K.; Kwak, J.; Park, S. D.; Yun, H. D.; Kim, S. Y.; Jung, M.; Kim, S. Y.; Park, K.; Kang, S.; Kim, S. D. et al. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. ACS Nano2015, 9, 679–686.Google Scholar
  148. [148]
    Chan, N.; Balakrishna, S. G.; Klemenz, A.; Moseler, M.; Egberts, P.; Bennewitz, R. Contrast in nanoscale friction between rotational domains of graphene on Pt(111). Carbon2017, 113, 132–138.Google Scholar
  149. [149]
    Nam, J.; Kim, D. C.; Yun, H.; Shin, D. H.; Nam, S.; Lee, W. K.; Hwang, J. Y.; Lee, S. W.; Weman, H.; Kim, K. S. Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon2017, 111, 733–740.Google Scholar
  150. [150]
    Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev.2018, 118, 6134–6150.Google Scholar
  151. [151]
    Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science2004, 303, 217–220.Google Scholar
  152. [152]
    Roth, S.; Matsui, F.; Greber, T.; Osterwalder, J. Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on cu(111). Nano Lett. 2013, 13, 2668–2675.Google Scholar
  153. [153]
    Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metalcatalyzed reactions. Nano Lett. 2015, 15, 3616–3623.Google Scholar
  154. [154]
    Morchutt, C.; Björk, J.; Krotzky, S.; Gutzler, R.; Kern, K. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene. Chem. Commun.2015, 51, 2440–2443.Google Scholar
  155. [155]
    Ren, J.; Zhang, N. C.; Zhang, H.; Peng, X. J. First-principles study of hydrogen storage on Pt (Pd)-doped boron nitride sheet. Struct. Chem.2015, 26, 731–738.Google Scholar
  156. [156]
    Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano2011, 5, 7303–7309.Google Scholar
  157. [157]
    Kuang, A. L.; Zhou, T. W.; Wang, G. Z.; Li, Y.; Wu, G.; Yuan, H. K.; Chen, H.; Yang, X. L. Dehydrogenation of ammonia borane catalyzed by pristine and defective h-BN sheets.Appl. Surf. Sci.2016, 362, 562–571.Google Scholar
  158. [158]
    Yang, X. J.; Li, L. L.; Sang, W. L.; Zhao, J. L.; Wang, X. X.; Yu, C.; Zhang, X. H.; Tang, C. C. Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. J. Alloys Compd.2017, 693, 642–649.Google Scholar
  159. [159]
    Zhang, Y. H.; Wei, M. M.; Fu, Q.; Bao, X. H. Oxygen intercalation under hexagonal boron nitride (h-BN) on Pt(111). Sci. Bull.2015, 60, 1572–1579.Google Scholar
  160. [160]
    Cao, F.; Ding, Y.; Chen, L.; Chen, C.; Fang, Z. Y. Fabrication and characterization of boron nitride bulk foam from borazine.Mater. Des.2014, 54, 610–615.Google Scholar
  161. [161]
    Deshmukh, V.; Nagnathappa, M.; Kharat, B.; Chaudhari, A. Theoretical study of borazine and substituted borazines using density functional theory method. J. Mol. Liq.2014, 193, 13–22.Google Scholar
  162. [162]
    Duperrier, S.; Chiriac, R.; Sigala, C.; Gervais, C.; Bernard, S.; Cornu, D.; Miele, P. Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers. J. Eur. Ceram. Soc.2009, 29, 851–855.Google Scholar
  163. [163]
    Duriez, C.; Framery, E.; Toury, B.; Toutois, P.; Miele, P.; Vaultier, M.; Bonnetot, B. Boron nitride thin fibres obtained from a new copolymer borazine-tri(methylamino)borazine precursor. J. Organomet. Chem.2002, 657, 107–114.Google Scholar
  164. [164]
    Gao, S. T.; Li, B.; Li, D.; Zhang, C. R.; Liu, R. J.; Wang, S. Q. Micromorphology and structure of pyrolytic boron nitride synthesized by chemical vapor deposition from borazine. Ceram. Int.2018, 44, 11424–11430.Google Scholar
  165. [165]
    Li, J. S.; Zhang, C. R.; Li, B. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition.Appl. Surf. Sci.2011, 257, 7752–7757.Google Scholar
  166. [166]
    Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K. et al. Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Lett. 2012, 12, 5821–5828.Google Scholar
  167. [167]
    Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I. Y.; Kim, G. H.; Choi, J. Y.; Kim, S. W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718.Google Scholar
  168. [168]
    Whittell, G. R.; Manners, I. Advances with ammonia-borane: Improved recycling and use as a precursor to atomically thin BN films.Angew. Chem., Int. Ed.2011, 50, 10288–10289.Google Scholar
  169. [169]
    Kim, S. K.; Cho, H.; Kim, M. J.; Lee, H. J.; Park, J. H.; Lee, Y. B.; Kim, H. C.; Yoon, C. W.; Nam, S. W.; Kang, S. O. Efficient catalytic conversion of ammonia borane to borazine and its use for hexagonal boron nitride (white graphene). J. Mater. Chem. A2013, 1, 1976–1981.Google Scholar
  170. [170]
    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.Google Scholar
  171. [171]
    Koepke, J. C.; Wood, J. D.; Chen, Y. F.; Schmucker, S. W.; Liu, X. M.; Chang, N. N.; Nienhaus, L.; Do, J. W.; Carrion, E. A.; Hewaparakrama, J. et al. Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane. Chem. Mater.2016, 28, 4169–4179.Google Scholar
  172. [172]
    Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers.Nano Lett. 2011, 11, 2032–2037.Google Scholar
  173. [173]
    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.Google Scholar
  174. [174]
    Ismach, A.; Chou, H.; Ferrer, D. A.; Wu, Y. P.; McDonnell, S.; Floresca, H. C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M. J. et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano2012, 6, 6378–6385.Google Scholar
  175. [175]
    Chatterjee, S.; Luo, Z. T.; Acerce, M.; Yates, D. M.; Johnson, A. T. C.; Sneddon, L. G. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem. Mater.2011, 23, 4414–4416.Google Scholar
  176. [176]
    Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.Google Scholar
  177. [177]
    Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Xie, X. M.; Jiang, M. H. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun.2015, 6, 6160.Google Scholar
  178. [178]
    Pan, H.; Zhang, Y. W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C2012, 116, 11752–11757.Google Scholar
  179. [179]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.Google Scholar
  180. [180]
    Lee, T. S.; Esposito, B.; Donley, M. S.; Zabinski, J. S.; Tatarchuk, B. J. Surface and buried-interfacial reactivity of iron and MoS2: A study of laser-deposited materials.Thin Solid Films1996, 286, 282–288.Google Scholar
  181. [181]
    Ataca, C.; Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C2011, 115, 13303–13311.Google Scholar
  182. [182]
    Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.Google Scholar
  183. [183]
    Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. S.; Wong, C. P. Largescale production of two-dimensional nanosheets.J. Mater. Chem.2012, 22, 13494–13499.Google Scholar
  184. [184]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials.Chem. Rev.2013, 113, 3766–3798.Google Scholar
  185. [185]
    Ding, X. L.; Ding, G. Q.; Xie, X. M.; Huang, F. Q.; Jiang, M. H. Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon2011, 49, 2522–2525.Google Scholar
  186. [186]
    Oshima, C.; Tanaka, N.; Itoh, A.; Rokuta, E.; Yamashita, K.; Sakurai, T. A heteroepitaxial multi-atomic-layer system of graphene and h-BN.Surf. Rev. Lett.2000, 7, 521–525.Google Scholar
  187. [187]
    Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition.ACS Nano2011, 5, 8062–8069.Google Scholar
  188. [187]
    Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J. et al. Graphene epitaxy by chemical vapor deposition on SiC.Nano Lett.2011, 11, 1786–1791.Google Scholar
  189. [189]
    Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J.; Jegou, P.; Shukla, A.; Chassagne, T. et al. Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett.2010, 96, 191910.Google Scholar
  190. [190]
    Sun, J.; Lindvall, N.; Cole, M. T.; Teo, K. B. K.; Yurgens, A. Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride. Appl. Phys. Lett.2011, 98, 252107.Google Scholar
  191. [191]
    Scott, A.; Dianat, A.; Börrnert, F.; Bachmatiuk, A.; Zhang, S. S.; Warner, J. H.; Borowiak-Paleñ, E.; Knupfer, M.; Büchner, B.; Cuniberti, G. et al. The catalytic potential of high-κ dielectrics for graphene formation. Appl. Phys. Lett.2011, 98, 073110.Google Scholar
  192. [192]
    Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano2010, 4, 4206–4210.Google Scholar
  193. [193]
    Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano2011, 5, 6507–6515.Google Scholar
  194. [194]
    Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers.Nano Lett. 2014, 14, 3185–3190.Google Scholar
  195. [195]
    Trung, T. N.; Seo, D. B.; Quang, N. D.; Kim, D.; Kim, E. T. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO.Electrochimica Acta2018, 260, 150–156.Google Scholar
  196. [196]
    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate.Small2012, 8, 966–971.Google Scholar
  197. [197]
    Li, X. L.; Li, Y. D. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S.Chem.—Eur. J.2003, 9, 2726–2731.Google Scholar
  198. [198]
    Yan, P. F.; Wang, J.; Yang, G. F.; Lu, N. Y.; Chu, G. Y.; Zhang, X. M.; Shen, X. W. Chemical vapor deposition of monolayer MoS2 on sapphire, Si and GaN substrates. Superlatt. Microst.2018, 120, 235–240.Google Scholar
  199. [199]
    Bai, H.; Ma, J.; Wang, F.; Yuan, Y.; Li, W.; Mi, W.; Han, Y.; Li, Y.; Tang, D.; Zhao, W. et al. A controllable synthesis of uniform MoS2 monolayers on annealed molybdenum foils. Mater. Lett.2017, 204, 35–38.Google Scholar
  200. [200]
    Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-zadeh, K. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale2012, 4, 461–466.Google Scholar
  201. [201]
    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater.2012, 24, 2320–2325.Google Scholar
  202. [202]
    Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep.2015, 5, 18596.Google Scholar
  203. [203]
    Rahmati, B.; Hajzadeh, I.; Karimzadeh, R.; Mohseni, S. M. Facile, scalable and transfer free vertical-MoS2 nanostructures grown on Au/SiO2 patterned electrode for photodetector application. Appl. Surf. Sci.2018, 455, 876–882.Google Scholar
  204. [204]
    Oh, H. M.; Han, G. H.; Kim, H.; Jeong, M. S. Influence of residual promoter to photoluminescence of CVD grown MoS2. Curr. Appl. Phys.2016, 16, 1223–1228.Google Scholar
  205. [205]
    Chen, X.; Wu, B.; Liu, Y. Q. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev.2016, 45, 2057–2074.Google Scholar
  206. [206]
    Cuxart, M. G.; Šics, I.; Goñi, A. R.; Pach, E.; Sauthier, G.; Paradinas, M.; Foerster, M.; Aballe, L.; Fernandez, H. M.; Carlino, V. et al. Inductively coupled remote plasma-enhanced chemical vapor deposition (rPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures. Carbon2017, 117, 331–342.Google Scholar
  207. [207]
    Pekdemir, S.; Onses, M. S.; Hancer, M. Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition.Surf. Coat. Technol.2017, 309, 814–819.Google Scholar
  208. [208]
    Zhang, L. F.; Feng, S. P.; Xiao, S. Q.; Shen, G.; Zhang, X. M.; Nan, H. Y.; Gu, X. F.; Ostrikov, K. Layer-controllable graphene by plasma thinning and post-annealing. Appl. Surf. Sci.2018, 441, 639–646.Google Scholar
  209. [209]
    Fan, L. W.; Zhang, H.; Zhang, P. P.; Sun, X. H. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition. Appl. Surf. Sci.2015, 347, 632–635.Google Scholar
  210. [210]
    Tang, S.; Zhang, Y.; Tian, Y.; Jin, S. Y.; Zhao, P.; Liu, F.; Zhan, R. Z.; Deng, S. Z.; Chen, J.; Xu, N. S. A two-dimensional structure graphene STM tips fabricated by microwave plasma enhanced chemical vapor deposition. Carbon2017, 121, 337–342.Google Scholar
  211. [211]
    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Free-standing subnanometer graphite sheets. Appl. Phys. Lett.2004, 85, 1265–1267.Google Scholar
  212. [212]
    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon2004, 42, 2867–2872.Google Scholar
  213. [213]
    Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon2007, 45, 2229–2234.Google Scholar
  214. [214]
    Kumar, R.; Singh, R. K.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies.Mater. Des.2016, 111, 291–300.Google Scholar
  215. [215]
    Kumar, R.; Singh, R. K.; Singh, D. P.; Vaz, A. R.; Yadav, R. R.; Rout, C. S.; Moshkalev, S. A. Synthesis of self-assembled and hierarchical palladium-CNTs-reduced graphene oxide composites for enhanced field emission properties.Mater. Des.2017, 122, 110–117.Google Scholar
  216. [216]
    Kumar, R.; Savu, R.; Singh, R. K.; Joanni, E.; Singh, D. P.; Tiwari, V. S.; Vaz, A. R.; da Silva, E. T. S. G.; Maluta, J. R.; Kubota, L. T. et al. Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation. Carbon2017, 117, 137–146.Google Scholar
  217. [217]
    Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces2017, 9, 8880–8890.Google Scholar
  218. [218]
    Kumar, R.; Singh, R. K.; Singh, A. K.; Vaz, A. R.; Rout, C. S.; Moshkalev, S. A. Facile and single step synthesis of three dimensional reduced graphene oxide-NiCoO2 composite using microwave for enhanced electron field emission properties. Appl. Surf. Sci.2017, 416, 259–265.Google Scholar
  219. [219]
    Kumar, R.; Singh, R. K.; Vaz, A. R.; Yadav, R. M.; Rout, C. S.; Moshkalev, S. A. Synthesis of reduced graphene oxide nanosheet-supported agglomerated cobalt oxide nanoparticles and their enhanced electron field emission properties. New J. Chem.2017, 41, 8431–8436.Google Scholar
  220. [220]
    Kumar, R.; da Silva, E. T. S. G.; Singh, R. K.; Savu, R.; Alaferdov, A. V.; Fonseca, L. C.; Carossi, L. C.; Singh, A.; Khandka, S.; Kar, K. K. et al. Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci. 2018, 515, 160–171.Google Scholar
  221. [221]
    Kumar, R.; Singh, R. K.; Alaferdov, A. V.; Moshkalev, S. A. Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim. Acta2018, 281, 78–87.Google Scholar
  222. [222]
    Bajpai, R.; Wagner, H. D. Fast growth of carbon nanotubes using a microwave oven. Carbon2015, 82, 327–336.Google Scholar
  223. [223]
    Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology2008, 19, 305604.Google Scholar
  224. [224]
    Vitchev, R.; Malesevic, A.; Petrov, R. H.; Kemps, R.; Mertens, M.; Vanhulsel, A.; van Haesendonck, C. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology2010, 21, 095602.Google Scholar
  225. [225]
    Yu, J.; Qin, L.; Hao, Y. F.; Kuang, S. Y.; Bai, X. D.; Chong, Y. M.; Zhang, W. J.; Wang, E. D. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano2010, 4, 414–422.Google Scholar
  226. [226]
    Zhou, F.; Huang, H. B.; Xiao, C. H.; Zheng, S. H.; Shi, X. Y.; Qin, J. Q.; Fu, Q.; Bao, X. H.; Feng, X. L.; Müllen, K. et al. Electrochemically scalable production of fluorine-modified graphene for flexible and highenergy ionogel-based microsupercapacitors. J. Am. Chem. Soc.2018, 140, 8198–8205.Google Scholar
  227. [227]
    Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull.2015, 60, 1994–2008.Google Scholar
  228. [228]
    Zhang, J.; Xu, L.; Zhou, B.; Zhu, Y. Y.; Jiang, X. Q. The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J. Colloid Interface Sci.2018, 513, 279–286.Google Scholar
  229. [229]
    Haar, S.; El Gemayel, M.; Shin, Y.; Melinte, G.; Squillaci, M. A.; Ersen, O.; Casiraghi, C.; Ciesielski, A.; Samorì, P. Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci. Rep.2015, 5, 16684.Google Scholar
  230. [230]
    Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res.2013, 46, 14–22.Google Scholar
  231. [231]
    Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water.J. Phys. Chem. Lett.2016, 7, 4884–4890.Google Scholar
  232. [232]
    Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L. F.; Vaia, R. A. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater.2016, 28, 337–348.Google Scholar
  233. [233]
    Wang, D. L.; Wu, F. M.; Song, Y. H.; Li, C.; Zhou, L. Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. J. Alloys Compd.2017, 728, 1030–1036.Google Scholar
  234. [234]
    Grayfer, E. D.; Kozlova, M. N.; Fedorov, V. E. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation.Adv. Colloid Interface Sci.2017, 245, 40–61.Google Scholar
  235. [235]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol.2008, 3, 538–542.Google Scholar
  236. [236]
    Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem.2006, 16, 155–158.Google Scholar
  237. [237]
    Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir2003, 19, 6050–6055.Google Scholar
  238. [238]
    Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B2006, 110, 8535–8539.Google Scholar
  239. [239]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon2007, 45, 1558–1565.Google Scholar
  240. [240]
    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.2008, 130, 16201–16206.Google Scholar
  241. [241]
    Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc.2008, 130, 5856–5857.Google Scholar
  242. [242]
    Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano2008, 2, 463–470.Google Scholar
  243. [243]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol.2008, 3, 270–274.Google Scholar
  244. [244]
    Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett.2008, 8, 1679–1682.Google Scholar
  245. [245]
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett.2007, 7, 3499–3503.Google Scholar
  246. [246]
    Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater.2008, 20, 4490–4493.Google Scholar
  247. [247]
    Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir2009, 25, 5957–5968.Google Scholar
  248. [248]
    Geng, Y.; Wang, S. J.; Kim, J. K. Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci.2009, 336, 592–598.Google Scholar
  249. [249]
    Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C2008, 112, 8192–8195.Google Scholar
  250. [250]
    Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett.2008, 8, 3137–3140.Google Scholar
  251. [251]
    Wu, S. X.; Yin, Z. Y.; He, Q. Y.; Huang, X.; Zhou, X. Z.; Zhang, H. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C2010, 114, 11816–11821.Google Scholar
  252. [252]
    Wei, Z. Q.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett.2008, 8, 3141–3145.Google Scholar
  253. [253]
    Bai, H.; Xu, Y. X.; Zhao, L.; Li, C.; Shi, G. Q. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun.2009, 1667–1669.Google Scholar
  254. [254]
    Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon2010, 48, 509–519.Google Scholar
  255. [255]
    Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano2009, 3, 3730–3736.Google Scholar
  256. [256]
    Park, J. S.; Cho, S. M.; Kim, W. J.; Park, J.; Yoo, P. J. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl. Mater. Interfaces2011, 3, 360–368.Google Scholar
  257. [257]
    Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater.2011, 23, 1188–1193.Google Scholar
  258. [258]
    Feng, L. Y.; Chen, Y. G.; Chen, L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano2011, 5, 9611–9618.Google Scholar
  259. [259]
    Geng, D. S.; Hu, Y. H.; Li, Y. L.; Li, R. Y.; Sun, X. L. One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochem. Commun.2012, 22, 65–68.Google Scholar
  260. [260]
    Li, Q.; Li, M.; Chen, Z. Q.; Li, C. M. Simple solution route to uniform MoS2 particles with randomly stacked layers. Mater. Res. Bull.2004, 39, 981–986.Google Scholar
  261. [261]
    Chen, X. Y.; Li, H. L.; Wang, S. M.; Yang, M.; Qi, Y. X. Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods. Mater. Lett.2012, 66, 22–24.Google Scholar
  262. [262]
    Li, G. W.; Li, C. S.; Tang, H.; Cao, K. S.; Chen, J.; Wang, F. F.; Jin, Y. Synthesis and characterization of hollow MoS2 microspheres grown from MoO3 precursors. J. Alloys Compd.2010, 501, 275–281.Google Scholar
  263. [263]
    Liu, Y. D.; Ren, L.; Qi, X.; Yang, L. W.; Hao, G. L.; Li, J.; Wei, X. L.; Zhong, J. X. Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. J. Alloys Compd.2013, 571, 37–42.Google Scholar
  264. [264]
    Lin, H. T.; Chen, X. Y.; Li, H. L.; Yang, M.; Qi, Y. X. Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett.2010, 64, 1748–1750.Google Scholar
  265. [265]
    Wei, R. H.; Yang, H. B.; Du, K.; Fu, W. Y.; Tian, Y. M.; Yu, Q. J.; Liu, S. K.; Li, M. H.; Zou, G. T. A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys.2008, 108, 188–191.Google Scholar
  266. [266]
    Sen, U. K.; Mitra, S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces2013, 5, 1240–1247.Google Scholar
  267. [267]
    Huang, W. Z.; Xu, Z. D.; Liu, R.; Ye, X. F.; Zheng, Y. F. Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres. Mater. Res. Bull.2008, 43, 2799–2805.Google Scholar
  268. [268]
    Gong, H. Q.; Zheng, F.; Li, Z.; Li, Y.; Hu, P. F.; Gong, Y.; Song, S. L.; Zhan, F. Y.; Zhen, Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochim. Acta2017, 227, 101–109.Google Scholar
  269. [269]
    Ding, S. J.; Zhang, D. Y.; Chen, J. S.; Lou, X. W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale2012, 4, 95–98.Google Scholar
  270. [270]
    Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett.2001, 30, 772–773.Google Scholar
  271. [271]
    Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z. X.; Wu, D.; Xiong, X.; Ouyang, F. P. Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy2018, 43, 14087–14095.Google Scholar
  272. [272]
    Senthil Kumar, S. M.; Selvakumar, K.; Thangamuthu, R.; Karthigai Selvi, A.; Ravichandran, S.; Sozhan, G.; Rajasekar, K.; Navascues, N.; Irusta, S. Hydrothermal assisted morphology designed MoS2 material as alternative cathode catalyst for PEM electrolyser application. Int. J. Hydrogen Energy2016, 41, 13331–13340.Google Scholar
  273. [273]
    Tiwary, C. S.; Javvaji, B.; Kumar, C.; Mahapatra, D. R.; Ozden, S.; Ajayan, P. M.; Chattopadhyay, K. Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon2015, 89, 217–224.Google Scholar
  274. [274]
    Mohammadi, S.; Kolahdouz, Z.; Darbari, S.; Mohajerzadeh, S.; Masoumi, N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon2013, 52, 451–463.Google Scholar
  275. [275]
    Dhakate, S. R.; Chauhan, N.; Sharma, S.; Mathur, R. B. The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon2011, 49, 4170–4178.Google Scholar
  276. [276]
    Cataldo, F.; Compagnini, G.; Patané, G.; Ursini, O.; Angelini, G.; Ribic, P. R.; Margaritondo, G.; Cricenti, A.; Palleschi, G.; Valentini, F. Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon2010, 48, 2596–2602.Google Scholar
  277. [277]
    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature2009, 458, 877–880.Google Scholar
  278. [278]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature2009, 458, 872–876.Google Scholar
  279. [279]
    Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett.2009, 9, 1527–1533.Google Scholar
  280. [280]
    Ozden, S.; Autreto, P. A. S.; Tiwary, C. S.; Khatiwada, S.; Machado, L.; Galvao, D. S.; Vajtai, R.; Barrera, E. V.; Ajayan, P. M. Unzipping carbon nanotubes at high impact. Nano Lett.2014, 14, 4131–4137.Google Scholar
  281. [281]
    Vadahanambi, S.; Jung, J. H.; Kumar, R.; Kim, H. J.; Oh, I. K. An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon2013, 53, 391–398.Google Scholar
  282. [282]
    Erickson, K. J.; Gibb, A. L.; Sinitskii, A.; Rousseas, M.; Alem, N.; Tour, J. M.; Zettl, A. K. Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons. Nano Lett.2011, 11, 3221–3226.Google Scholar
  283. [283]
    Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett.2010, 10, 5049–5055.Google Scholar
  284. [284]
    Vasu, K.; Yamijala, S. S. R. K. C.; Zak, A.; Gopalakrishnan, K.; Pati, S. K.; Rao, C. N. R. Clean WS2 and MoS2 nanoribbons generated by laserinduced unzipping of the nanotubes. Small2015, 11, 3916–3920.Google Scholar
  285. [285]
    Silva, A. A.; Pinheiro, R. A.; Rodrigues, A. C.; Baldan, M. R.; Trava-Airoldi, V. J.; Corat, E. J. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci.2018, 446, 201–208.Google Scholar
  286. [286]
    Wu, Z. S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H. M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res.2010, 3, 16–22.Google Scholar
  287. [287]
    Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: Neem oil. Nanoscale Res. Lett.2011, 6, 92.Google Scholar
  288. [288]
    Awasthi, K.; Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: Turpentine oil. J. Exp. Nanosci.2010, 5, 498–508.Google Scholar
  289. [289]
    Zhuang, N. F.; Liu, C. C.; Jia, L. N.; Wei, L.; Cai, J. D.; Guo, Y. L.; Zhang, Y. F.; Hu, X. L.; Chen, J. Z.; Chen, X. D. et al. Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology2013, 24, 325604.Google Scholar
  290. [290]
    Jiao, L. Y.; Zhang, L.; Ding, L.; Liu, J.; Dai, H. J. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res.2010, 3, 387–394.Google Scholar
  291. [291]
    Shinde, D. B.; Majumder, M.; Pillai, V. K. Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep.2014, 4, 4363.Google Scholar
  292. [292]
    Shinde, D. B.; Debgupta, J.; Kushwaha, A.; Aslam, M.; Pillai, V. K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc.2011, 133, 4168–4171.Google Scholar
  293. [293]
    Li, Y. S.; Liao, J. L.; Wang, S. Y.; Chiang, W. H. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Sci. Rep.2016, 6, 22755.Google Scholar
  294. [294]
    Yang, M.; Hu, L. G.; Tang, X. W.; Zhang, H. D.; Zhu, H. X.; Fan, T. X.; Zhang, D. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: Towards controllable synthesis of high-quality graphitic nanoribbons. Carbon2016, 110, 480–489.Google Scholar
  295. [295]
    Rollings, E.; Gweon, G. H.; Zhou, S. Y.; Mun, B. S.; McChesney, J. L.; Hussain, B. S.; Fedorov, A. V.; First, P. N.; de Heer, W. A.; Lanzara, A. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids2006, 67, 2172–2177.Google Scholar
  296. [296]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science2008, 319, 1229–1232.Google Scholar
  297. [297]
    Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Phys. E2007, 40, 228–232.Google Scholar
  298. [298]
    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett.2007, 98, 206805.Google Scholar
  299. [299]
    Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Räder, H. J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc.2008, 130, 4216–4217.Google Scholar
  300. [300]
    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.Google Scholar
  301. [301]
    Valentini, L. Formation of unzipped carbon nanotubes by CF4 plasma treatment. Diam. Relat. Mater.2011, 20, 445–448.Google Scholar
  302. [302]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature2009, 458, 872–876.Google Scholar
  303. [303]
    Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano2010, 4, 2059–2069.Google Scholar
  304. [304]
    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature2009, 458, 877–880.Google Scholar
  305. [305]
    Kang, Y. R.; Li, Y. L.; Deng, M. Y. Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges. J. Mater. Chem.2012, 22, 16283–16287.Google Scholar
  306. [306]
    Cho, S.; Kikuchi, K.; Kawasaki, A. Radial followed by longitudinal unzipping of multiwalled carbon nanotubes. Carbon2011, 49, 3865–3872.Google Scholar
  307. [307]
    Kumar, P.; Panchakarla, L. S.; Rao, C. N. R. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale2011, 3, 2127–2129.Google Scholar
  308. [308]
    Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X. B.; Ferralis, N.; Ko, H.; Chueh, Y. L.; Zhang, Y. G.; Maboudian, R. et al. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett.2010, 96, 063110.Google Scholar
  309. [309]
    García, J. M.; He, R.; Jiang, M. P.; Kim, P.; Pfeiffer, L. N.; Pinczuk, A. Multilayer graphene grown by precipitation upon cooling of nickel on diamond. Carbon2011, 49, 1006–1012.Google Scholar
  310. [310]
    Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett.2013, 13, 276–281.Google Scholar
  311. [311]
    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl. Phys. Lett.2015, 106, 213108.Google Scholar
  312. [312]
    Tonkikh, A. A.; Voloshina, E. N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S. S. P.; Dedkov, Y. S. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications. Sci. Rep.2016, 6, 23547.Google Scholar
  313. [313]
    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano2012, 6, 74–80.Google Scholar
  314. [314]
    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano2010, 4, 2695–2700.Google Scholar
  315. [315]
    Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed.2010, 49, 4059–4062.Google Scholar
  316. [316]
    Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed.2011, 50, 11093–11097.Google Scholar
  317. [317]
    Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett.2011, 11, 5111–5116.Google Scholar
  318. [318]
    Loh, T. A. J.; Chua, D. H. C. Growth mechanism of pulsed laser fabricated few-layer MoS2 on metal substrates. ACS Appl. Mater. Interfaces2014, 6, 15966–15971.Google Scholar
  319. [319]
    Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed laser-deposited MoS2 thin films on W and Si: Field emission and photoresponse studies. ACS Appl. Mater. Interfaces2014, 6, 15881–15888.Google Scholar
  320. [320]
    Serrao, C. R.; Diamond, A. M.; Hsu, S. L.; You, L.; Gadgil, S.; Clarkson, J.; Carraro, C.; Maboudian, R.; Hu, C. M.; Salahuddin, S. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett.2015, 106, 052101.Google Scholar
  321. [321]
    Muratore, C.; Hu, J. J.; Wang, B.; Haque, M. A.; Bultman, J. E.; Jespersen, M. L.; Shamberger, P. J.; McConney, M. E.; Naguy, R. D.; Voevodin, A. A. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett.2014, 104, 261604.Google Scholar
  322. [322]
    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Besenbacher, F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett.2000, 84, 951–954.Google Scholar
  323. [323]
    Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature2010, 468, 549–552.Google Scholar
  324. [324]
    Shin, H. J.; Choi, W. M.; Yoon, S. M.; Han, G. H.; Woo, Y. S.; Kim, E. S.; Chae, S. J.; Li, X. S.; Benayad, A.; Loc, D. D. et al. Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv. Mater.2011, 23, 4392–4397.Google Scholar
  325. [325]
    Yan, Z.; Peng, Z. W.; Sun, Z. Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M. Growth of bilayer graphene on insulating substrates. ACS Nano2011, 5, 8187–8192.Google Scholar
  326. [326]
    Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G. Simple and scalable route for the “bottom-up” synthesis of few-layer graphene platelets and thin films. J. Mater. Chem.2011, 21, 3378–3383.Google Scholar
  327. [327]
    Memon, N. K.; Tse, S. D.; Chhowalla, M.; Kear, B. H. Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc. Combust. Inst.2013, 34, 2163–2170.Google Scholar
  328. [328]
    Memon, N. K.; Tse, S. D.; Al-Sharab, J. F.; Yamaguchi, H.; Goncalves, A. M. B.; Kear, B. H.; Jaluria, Y.; Andrei, E. Y.; Chhowalla, M. Flame synthesis of graphene films in open environments. Carbon2011, 49, 5064–5070.Google Scholar
  329. [329]
    Liu, H. Z.; Zhu, S. Y.; Jiang, W. T. Rapid flame synthesis of multilayer graphene on SiO2/Si substrate. J. Mater. Sci. Mater. Electron.2016, 27, 2795–2799.Google Scholar
  330. [330]
    Cai, L. L.; McClellan, C. J.; Koh, A. L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X. L. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett.2017, 17, 3854–3861.Google Scholar
  331. [331]
    Guo, L. J.; Peng, J. Growth of graphene sheets under an oxyacetylene flame without a catalyst. New Carbon Mater.2017, 32, 188–192.Google Scholar
  332. [332]
    Mohammed, M. K. A.; Al-Mousoi, A. K.; Khalaf, H. A. Deposition of multi-layer graphene (MLG) film on glass slide by flame synthesis technique. Optik2016, 127, 9848–9852.Google Scholar
  333. [333]
    Zhang, J.; Tian, T.; Chen, Y. H.; Niu, Y. F.; Tang, J.; Qin, L. C. Synthesis of graphene from dry ice in flames and its application in supercapacitors. Chem. Phys. Lett.2014, 591, 78–81.Google Scholar
  334. [334]
    Zhao, J. G.; Guo, Y.; Li, Z. P.; Guo, Q. H.; Shi, J. H.; Wang, L. H.; Fan, J. F. An approach for synthesizing graphene with calcium carbonate and magnesium. Carbon2012, 50, 4939–4944.Google Scholar
  335. [335]
    Chakrabarti, A.; Lu, J.; Skrabutenas, J. C.; Xu, T.; Xiao, Z. L.; Maguire, J. A.; Hosmane, N. S. Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem.2011, 21, 9491–9493.Google Scholar
  336. [336]
    Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-step ionicliquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater.2008, 18, 1518–1525.Google Scholar
  337. [337]
    Gomes, F. O. V.; Pokle, A.; Marinkovic, M.; Balster, T.; Canavan, M.; Fleischer, K.; Anselmann, R.; Nicolosi, V.; Wagner, V. Influence of temperature on morphological and optical properties of MoS2 layers as grown based on solution processed precursor. Thin Solid Films2018, 645, 38–44.Google Scholar
  338. [338]
    Shahzad, R.; Kim, T.; Kang, S. W. Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films2017, 641, 79–86.Google Scholar
  339. [339]
    Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater.2015, 27, 4113–4141.Google Scholar
  340. [340]
    Kim, H. R.; Lee, S. H.; Lee, K. H. Scalable production of large singlelayered graphenes by microwave exfoliation “in deionized water”. Carbon2018, 134, 431–438.Google Scholar
  341. [341]
    Sreedhar, D.; Devireddy, S.; Veeredhi, V. R. Synthesis and study of reduced graphene oxide layers under microwave irradiation. Mater. Today Proc.2018, 5, 3403–3410.Google Scholar
  342. [342]
    Zhao, X.; Gou, L. Comparative analysis of graphene grown on copper and nickel sheet by microwave plasma chemical vapor deposition. Vacuum2018, 153, 48–52.Google Scholar
  343. [343]
    Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett.2008, 8, 2012–2016.Google Scholar
  344. [344]
    Dato, A.; Frenklach, M. Substrate-free microwave synthesis of graphene: Experimental conditions and hydrocarbon precursors. New J. Phys.2010, 12, 125013.Google Scholar
  345. [345]
    Kim, C. D.; Min, B. K.; Jung, W. S. Preparation of graphene sheets by the reduction of carbon monoxide. Carbon2009, 47, 1610–1612.Google Scholar
  346. [346]
    Vollath, D.; Szabó, D. V. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett.1998, 35, 236–244.Google Scholar
  347. [347]
    Vollath, D.; Szabó, D. V. Nanoparticles from compounds with layered structures. Acta Mater.2000, 48, 953–967.Google Scholar
  348. [348]
    Liu, N.; Wang, X. Z.; Xu, W. Y.; Hu, H.; Liang, J. J.; Qiu, J. S. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel2014, 119, 163–169.Google Scholar
  349. [349]
    Si, P. Z.; Zhang, M.; Zhang, Z. D.; Zhao, X. G.; Ma, X. L.; Geng, D. Y. Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci.2005, 40, 4287–4291.Google Scholar
  350. [350]
    Hu, J. J.; Bultman, J. E.; Zabinski, J. S. Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett.2004, 17, 543–546.Google Scholar
  351. [351]
    Chhowalla, M.; Amaratunga, G. A. J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature2000, 407, 164–167.Google Scholar
  352. [352]
    Alexandrou, I.; Sano, N.; Burrows, A.; Meyer, R. R.; Wang, H.; Kirkland, A. I.; Kiely, C. J.; Amaratunga, G. A. J. Structural investigation of MoS2 core-shell nanoparticles formed by an arc discharge in water. Nanotechnology2003, 14, 913–917.Google Scholar
  353. [353]
    Sano, N.; Wang, H. L.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G. A. J.; Naito, M.; Kanki, T. Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett.2003, 368, 331–337.Google Scholar
  354. [354]
    Gong, C.; Huang, C. M.; Miller, J.; Cheng, L. X.; Hao, Y. F.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K. et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano2013, 7, 11350–11357.Google Scholar
  355. [355]
    Sen, R.; Govindaraj, A.; Suenaga, K.; Suzuki, S.; Kataura, H.; Iijima, S.; Achiba, Y. Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450–1050 °C. Chem. Phys. Lett.2001, 340, 242–248.Google Scholar
  356. [356]
    Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J. The first true inorganic fullerenes? Nature1999, 397, 114.Google Scholar
  357. [357]
    Mdleleni, M. M.; Hyeon, T.; Suslick, K. S. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc.1998, 120, 6189–6190.Google Scholar
  358. [358]
    Dhas, N. A.; Suslick, K. S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc.2005, 127, 2368–2369.Google Scholar
  359. [359]
    Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano2013, 7, 9260–9267.Google Scholar
  360. [360]
    Cho, A.; Koh, J. H.; Lee, S. I.; Moon, S. H. Activity and thermal stability of sonochemically synthesized MoS2 and Ni-promoted MoS2 catalysts. Catal. Today2010, 149, 47–51.Google Scholar
  361. [361]
    Mastai, Y.; Homyonfer, M.; Gedanken, A.; Hodes, G. Room temperature sonoelectrochemical synthesis of molybdenum sulfide fullerene-like nanoparticles. Adv. Mater.1999, 11, 1010–1013.Google Scholar
  362. [362]
    Audronis, M.; Leyland, A.; Kelly, P. J.; Matthews, A. Composition and structure-property relationships of chromium-diboride/molybdenumdisulphide PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering. Appl. Phys. A2008, 91, 77–86.Google Scholar
  363. [363]
    Spalvins, T. Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films1982, 96, 17–24.Google Scholar
  364. [364]
    Bichsel, R.; Buffat, P.; Levy, F. Correlation between process conditions, chemical composition and morphology of MoS2 films prepared by RF planar magnetron sputtering. J. Phys. D Appl. Phys.1986, 19, 1575–1585.Google Scholar
  365. [365]
    Spalvins, T. Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum. A S L E Trans.1969, 12, 36–43.Google Scholar
  366. [366]
    Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy2012, 1, 107–131.Google Scholar
  367. [367]
    Dong, Y. F.; Wu, Z. S.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Graphene: A promising 2D material for electrochemical energy storage. Sci. Bull.2017, 62, 724–740.Google Scholar
  368. [368]
    Yang, J.; Liu, W.; Niu, H.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res.2018, 11, 4744–4758.Google Scholar
  369. [369]
    Kumar, R.; Kim, H. J.; Park, S.; Srivastava, A.; Oh, I. K. Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon2014, 79, 192–202.Google Scholar
  370. [370]
    Kumar, R.; Singh, R. K.; Dubey, P. K.; Singh, D. P.; Yadav, R. M. Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for highperformance supercapacitor electrode. ACS Appl. Mater. Interfaces2015, 7, 15042–15051.Google Scholar
  371. [371]
    Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater.2018, 30, 1800124.Google Scholar
  372. [372]
    Bakandritsos, A.; Chronopoulos, D. D.; Jakubec, P.; Pykal, M.; Èépe, K.; Steriotis, T.; Kalytchuk, S.; Petr, M.; Zboøil, R.; Otyepka, M. Highperformance supercapacitors based on a zwitterionic network of covalently functionalized graphene with iron tetraaminophthalocyanine. Adv. Funct. Mater.2018, 28, 1801111.Google Scholar
  373. [373]
    Nagar, B.; Dubal, D. P.; Pires, L.; Merkoçi, A.; Gómez-Romero, P. Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. ChemSusChem2018, 11, 1849–1856.Google Scholar
  374. [374]
    Luo, Y. X.; Zhang, Q. E.; Hong, W. J.; Xiao, Z. Y.; Bai, H. A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(II) ion active electrolyte. Phys. Chem. Chem. Phys.2018, 20, 131–136.Google Scholar
  375. [375]
    Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule2019, 3, 459–470.Google Scholar
  376. [376]
    Chen, N. N.; Ni, L.; Zhou, J. H.; Zhu, G. Y.; Kang, Q.; Zhang, Y.; Chen, S. Y.; Zhou, W. X.; Lu, C. L.; Chen, J. et al. Sandwich-like holey graphene/PANI/graphene nanohybrid for ultrahigh-rate supercapacitor. ACS Appl. Energy Mater.2018, 1, 5189–5197.Google Scholar
  377. [377]
    Manjakkal, L.; Núñez, C. G.; Dang, W. T.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy2018, 51, 604–612.Google Scholar
  378. [378]
    Zhang, Z. Y.; Liu, M. L.; Tian, X.; Xu, P.; Fu, C. Y.; Wang, S.; Liu, Y. Q. Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance. Nano Energy2018, 50, 182–191.Google Scholar
  379. [379]
    Zhang, S.; Sui, L. N.; Dong, H. Z.; He, W. B.; Dong, L. F.; Yu, L. Y. High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl. Mater. Interfaces2018, 10, 12983–12991.Google Scholar
  380. [380]
    Boruah, B. D.; Maji, A.; Misra, A. Flexible array of microsupercapacitor for additive energy storage performance over a large area. ACS Appl. Mater. Interfaces2018, 10, 15864–15872.Google Scholar
  381. [381]
    Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater.2018, 30, 1704449.Google Scholar
  382. [382]
    Liu, K. K.; Jiang, Q. S.; Kacica, C.; Derami, H. G.; Biswas, P.; Singamaneni, S. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv.2018, 8, 31296–31302.Google Scholar
  383. [383]
    Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res.2010, 3, 748–756.Google Scholar
  384. [384]
    Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res.2016, 9, 2904–2911.Google Scholar
  385. [385]
    Benítez, A.; Caballero, A.; Morales, J.; Hassoun, J.; Rodríguez-Castellón, E.; Canales-Vázquez, J. Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Res.2019, 12, 759–766.Google Scholar
  386. [386]
    Wang, A. X.; Tang, S.; Kong, D. B.; Liu, S.; Chiou, K.; Zhi, L. J.; Huang, J. X.; Xia, Y. Y.; Luo, J. Y. Bending-tolerant anodes for lithium-metal batteries. Adv. Mater.2018, 30, 1703891.Google Scholar
  387. [387]
    Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy2019, 60, 743–751.Google Scholar
  388. [388]
    Hu, Y. X.; Luo, B.; Ye, D. L.; Zhu, X. B.; Lyu, M.; Wang, L. Z. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater.2017, 29, 1606132.Google Scholar
  389. [389]
    Yuan, T. C.; Wang, Y. X.; Zhang, J. X.; Pu, X. J.; Ai, X. P.; Chen, Z. X.; Yang, H. X.; Cao, Y. L. 3D Graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy2019, 56, 160–168.Google Scholar
  390. [390]
    Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Li, Z. H.; Zhang, H. Q.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy2018, 53, 524–535.Google Scholar
  391. [391]
    Pan, J.; Chen, S. L.; Fu, Q.; Sun, Y. W.; Zhang, Y. C.; Lin, N.; Gao, P.; Yang, J.; Qian, Y. T. Layered-structure SbPO4/reduced graphene oxide: An advanced anode material for sodium ion batteries. ACS Nano2018, 12, 12869–12878.Google Scholar
  392. [392]
    Wang, H. W.; Wu, M. S.; Lei, X. L.; Tian, Z. F.; Xu, B.; Huang, K.; Ouyang, C. Y. Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nano Energy2018, 49, 67–76.Google Scholar
  393. [393]
    Longoni, G.; Panda, J. K.; Gagliani, L.; Brescia, R.; Manna, L.; Bonaccorso, F.; Pellegrini, V. In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy2018, 51, 656–667.Google Scholar
  394. [394]
    Han, J. H.; Hirata, A.; Du, J.; Ito, Y.; Fujita, T.; Kohara, S.; Ina, T.; Chen, M. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy2018, 49, 354–362.Google Scholar
  395. [395]
    Li, J. L.; Qin, W.; Xie, J. P.; Lei, H.; Zhu, Y. Q.; Huang, W. Y.; Xu, X.; Zhao, Z. J.; Mai, W. J. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy2018, 53, 415–424.Google Scholar
  396. [396]
    Li, Q. C.; Song, Y. Z.; Xu, R. Z.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z. N.; Wei, N.; Rümmeli, M. H.; Zou, X. L. et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano2018, 12, 10240–10250.Google Scholar
  397. [397]
    Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1800849.Google Scholar
  398. [398]
    Zhou, L. J.; Zhang, C. Y.; Cai, X. Y.; Qian, Y.; Jiang, H. F.; Li, B. S.; Lai, L. F.; Shen, Z. X.; Huang, W. N, P co-doped hierarchical porous graphene as a metal-free bifunctional air cathode for Zn-air batteries. ChemElectroChem2018, 5, 1811–1816.Google Scholar
  399. [399]
    Khan, A. F.; Down, M. P.; Smith, G. C.; Foster, C. W.; Banks, C. E. Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): Role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. J. Mater. Chem. A2017, 5, 4103–4113.Google Scholar
  400. [400]
    Saha, S.; Jana, M.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N. C.; Kuila, T. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces2015, 7, 14211–14222.Google Scholar
  401. [401]
    Saha, S.; Jana, M.; Samanta, P.; Murmu, N. C.; Kim, N. H.; Kuila, T.; Lee, J. H. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys.2017, 190, 153–165.Google Scholar
  402. [402]
    Byun, S.; Kim, J. H.; Song, S. H.; Lee, M.; Park, J. J.; Lee, G.; Hong, S. H.; Lee, D. Ordered, scalable heterostructure comprising boron nitride and graphene for high-performance flexible supercapacitors. Chem. Mater.2016, 28, 7750–7756.Google Scholar
  403. [403]
    Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep.2017, 7, 17449.Google Scholar
  404. [404]
    Zheng, S. H.; Lei, W. W.; Qin, J. Q.; Wu, Z.-S.; Zhou, F.; Wang, S.; Shi, X. Y.; Sun, C. L.; Chen, Y.; Bao, X. H. All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Mater.2018, 10, 24–31.Google Scholar
  405. [405]
    Xie, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv.2017, 3, eaao3170.Google Scholar
  406. [406]
    Li, H. L.; Tay, R. Y.; Tsang, S. H.; Liu, W. W.; Teo, E. H. T. Reduced graphene oxide/boron nitride composite film as a novel binder-free anode for lithium ion batteries with enhanced performances. Electrochim. Acta2015, 166, 197–205.Google Scholar
  407. [407]
    Monajjemi, M. Graphene/(h-BN)n/X-doped graphene as anode material in lithium ion batteries (X = Li, Be, B and N). Maced. J. Chem. Chem. Eng.2017, 36, 101–118.Google Scholar
  408. [408]
    Kim, P. J. H.; Seo, J.; Fu, K.; Choi, J.; Liu, Z. M.; Kwon, J.; Hu, L. B.; Paik, U. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Mater.2017, 9, e375.Google Scholar
  409. [409]
    Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable li metal anodes. Nano Lett.2015, 15, 6149–6154.Google Scholar
  410. [410]
    Aydın, H.; Çelik, S. Ü.; Bozkurt, A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics2017, 309, 71–76.Google Scholar
  411. [411]
    Rodrigues, M. T. F.; Kalaga, K.; Gullapalli, H.; Babu, G.; Reddy, A. L. M.; Ajayan, P. M. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to 150 °C. Adv. Energy Mater.2016, 6, 1600218.Google Scholar
  412. [412]
    Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Kim, S. J. High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte. J. Alloys Compd.2019, 771, 803–809.Google Scholar
  413. [413]
    Islam, N.; Wang, S.; Warzywoda, J.; Fan, Z. Y. Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. J. Power Sources2018, 400, 277–283.Google Scholar
  414. [414]
    Neetika; Sanger, A.; Malik, V. K.; Chandra, R. One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application. Int. J. Hydrogen Energy2018, 43, 11141–11149.Google Scholar
  415. [415]
    Joseph, N.; Muhammed Shafi, P.; Chandra Bose, A. Metallic 1T-MoS2 with defect induced additional active edges for high performance supercapacitor application. New J. Chem.2018, 42, 12082–12090.Google Scholar
  416. [416]
    Nandi, D. K.; Sahoo, S.; Sinha, S.; Yeo, S.; Kim, H.; Bulakhe, R. N.; Heo, J.; Shim, J. J.; Kim, S. H. Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: A novel approach to prepare an electrode for supercapacitors. ACS Appl. Mater. Interfaces2017, 9, 40252–40264.Google Scholar
  417. [417]
    Saraf, M.; Natarajan, K.; Mobin, S. M. Emerging robust heterostructure of MoS2-rGO for high-performance supercapacitors. ACS Appl. Mater. Interfaces2018, 10, 16588–16595.Google Scholar
  418. [418]
    Zardkhoshoui, A. M.; Davarani, S. S. H. Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density. J. Electroanal. Chem.2018, 827, 221–229.Google Scholar
  419. [419]
    Liu, M. C.; Xu, Y.; Hu, Y. X.; Yang, Q. Q.; Kong, L. B.; Liu, W. W.; Niu, W. J.; Chueh, Y. L. Electrostatically charged MoS2/graphene oxide hybrid composites for excellent electrochemical energy storage devices. ACS Appl. Mater. Interfaces2018, 10, 35571–35579.Google Scholar
  420. [420]
    Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Highly active 2D layered MoS2-rGO hybrids for energy conversion and storage applications. Sci. Rep.2017, 7, 8378.Google Scholar
  421. [421]
    Sha, R.; Badhulika, S. Few layered MoS2 grown on pencil graphite: A unique single-step approach to fabricate economical, binder-free electrode for supercapacitor applications. Nanotechnology2019, 30, 035402.Google Scholar
  422. [422]
    Pedico, A.; Lamberti, A.; Gigot, A.; Fontana, M.; Bella, F.; Rivolo, P.; Cocuzza, M.; Pirri, C. F. High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Appl. Energy Mater.2018, 1, 4440–4447.Google Scholar
  423. [423]
    Xie, B. Q.; Chen, Y.; Yu, M. Y.; Sun, T.; Lu, L. H.; Xie, T.; Zhang, Y.; Wu, Y. C. Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon2016, 99, 35–42.Google Scholar
  424. [424]
    Zhu, J. X.; Sun, W. P.; Yang, D.; Zhang, Y.; Hoon, H. H.; Zhang, H.; Yan, Q. Y. Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small2015, 11, 4123–4129.Google Scholar
  425. [425]
    Yang, C.; Chen, Z. X.; Shakir, I.; Xu, Y. X.; Lu, H. B. Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for highperformance supercapacitors. Nano Res.2016, 9, 951–962.Google Scholar
  426. [426]
    Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as highperformance supercapacitor electrodes. Adv. Mater.2015, 27, 1117–1123.Google Scholar
  427. [427]
    Chao, J.; Yang, L. C.; Liu, J. W.; Hu, R. Z.; Zhu, M. Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim. Acta2018, 270, 387–394.Google Scholar
  428. [428]
    Li, X.; Zhang, C. F.; Xin, S.; Yang, Z. C.; Li, Y. T.; Zhang, D. W.; Yao, P. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for highperformance supercapacitors. ACS Appl. Mater. Interfaces2016, 8, 21373–21380.Google Scholar
  429. [429]
    Huang, K. J.; Wang, L.; Liu, Y. J.; Wang, H. B.; Liu, Y. M.; Wang, L. L. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta2013, 109, 587–594.Google Scholar
  430. [430]
    Palsaniya, S.; Nemade, H. B.; Dasmahapatra, A. K. Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polymer2018, 150, 150–158.Google Scholar
  431. [431]
    Lin, T. W.; Sadhasivam, T.; Wang, A. Y.; Chen, T. Y.; Lin, J. Y.; Shao, L. D. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem2018, 5, 1024–1031.Google Scholar
  432. [432]
    Zhao, C. Y.; Ang, J. M.; Liu, Z. L.; Lu, X. H. Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chem. Eng. J.2017, 330, 462–469.Google Scholar
  433. [433]
    Lei, X.; Yu, K.; Qi, R. J.; Zhu, Z. Q. Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithiumion batteries and supercapacitors. Chem. Eng. J.2018, 347, 607–617.Google Scholar
  434. [434]
    Yan, Z. S.; Long, J. Y.; Zhou, Q. F.; Gong, Y.; Lin, J. H. One-step synthesis of MnS/MoS2/C through the calcination and sulfurization of a bi-metal-organic framework for a high-performance supercapacitor and its photocurrent investigation. Dalton Trans.2018, 47, 5390–5405.Google Scholar
  435. [435]
    Kandula, S.; Shrestha, K. R.; Kim, N. H.; Lee, J. H. Fabrication of a 3D hierarchical sandwich Co9S8/α-MnS@N-C@MoS2 nanowire architectures as advanced electrode material for high performance hybrid supercapacitors. Small2018, 14, 1800291.Google Scholar
  436. [436]
    Hou, X. C.; Zhang, Y. Z.; Dong, Q. C.; Hong, Y.; Liu, Y. L.; Wang, W. J.; Shao, J. J.; Si, W. L.; Dong, X. C. Metal organic framework derived core-shell structured Co9S8@N-C@MoS2 nanocubes for supercapacitor. ACS Appl. Energy Mater.2018, 1, 3513–3520.Google Scholar
  437. [437]
    Thakur, A. K.; Majumder, M.; Choudhary, R. B.; Singh, S. B. MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications. J. Power Sources2018, 402, 163–173.Google Scholar
  438. [438]
    Tian, J. Y.; Zhang, H. Y.; Li, Z. H. Synthesis of double-layer nitrogendoped microporous hollow carbon@MoS2/MoO2 nanospheres for supercapacitors. ACS Appl. Mater. Interfaces2018, 10, 29511–29520.Google Scholar
  439. [439]
    Jing, L. Y.; Lian, G.; Wang, J. R.; Zhao, M. W.; Liu, X. Z.; Wang, Q. L.; Cui, D. L.; Wong, C. P. Porous-hollow nanorods constructed from alternate intercalation of carbon and MoS2 monolayers for lithium and sodium storage. Nano Res., in press, DOI: Scholar
  440. [440]
    Bozheyev, F.; Zhexembekova, A.; Zhumagali, S.; Molkenova, A.; Bakenov, Z. MoS2 nanopowder as anode material for lithium-ion batteries produced by self-propagating high-temperature synthesis. Mater. Today Proc.2017, 4, 4567–4571.Google Scholar
  441. [441]
    Liu, Y. Y.; Zhang, L.; Wang, H. Q.; Yu, C.; Yan, X. L.; Liu, Q. N.; Xu, B.; Wang, L. M. Synthesis of severe lattice distorted MoS2 coupled with hetero-bonds as anode for superior lithium-ion batteries. Electrochim. Acta2018, 262, 162–172.Google Scholar
  442. [442]
    Wang, R. X.; Gao, S.; Wang, K. L.; Zhou, M.; Cheng, S. J.; Jiang, K. MoS2@rGO nanoflakes as high performance anode materials in sodium ion batteries. Sci. Rep.2017, 7, 7963.Google Scholar
  443. [443]
    David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano2014, 8, 1759–1770.Google Scholar
  444. [444]
    Guo, P. Q.; Liu, D. Q.; Liu, Z. J.; Shang, X. N.; Liu, Q. M.; He, D. Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta2017, 256, 28–36.Google Scholar
  445. [445]
    Stolyarova, S. G.; Kanygin, M. A.; Koroteev, V. O.; Shubin, Y. V.; Smirnov, D. A.; Okotrub, A. V.; Bulusheva, L. G. High-pressure high-temperature synthesis of MoS2/holey graphene hybrids and their performance in Li-ion batteries. Phys. Status Solidi B2018, 255, 1700262.Google Scholar
  446. [446]
    Dong, Y. F.; Lu, P. F.; Shi, H. D.; Qin, J. Q.; Chen, J.; Ren, W. C.; Cheng, H. M.; Wu, Z. S. 2D Hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. J. Energy Chem.2019, 36, 64–73.Google Scholar
  447. [447]
    Li, Z. T.; Deng, S. Z.; Xu, R. F.; Wei, L. Q.; Su, X.; Wu, M. B. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components. Electrochim. Acta2017, 252, 200–207.Google Scholar
  448. [448]
    Wang, J. G.; Zhou, R.; Jin, D. D.; Xie, K. Y.; Wei, B. Q. Uniform growth of MoS2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries. Electrochim. Acta2017, 231, 396–402.Google Scholar
  449. [449]
    Shan, X. Y.; Zhang, N.; Zheng, R. D.; Gao, H.; Zhang, X. T. One-pot synthesis of SL-MoS2/C/Ti3C2Tx@C hierarchical superstructures for ultralong cycle-life Li-ion batteries. Electrochim. Acta2019, 295, 286–293.Google Scholar
  450. [450]
    Badam, R.; Joshi, P.; Vedarajan, R.; Natarajan, R.; Matsumi, N. Few-layered MoS2/acetylene black composite as an efficient anode material for lithium-ion batteries. Nanoscale Res. Lett.2017, 12, 555.Google Scholar
  451. [451]
    Jing, L. Y.; Lian, G.; Niu, F. E.; Yang, J.; Wang, Q. L.; Cui, D. L.; Wong, C. P.; Liu, X. Z. Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy2018, 51, 546–555.Google Scholar
  452. [452]
    Balasingam, S. K.; Lee, J. S.; Jun, Y. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans.2015, 44, 15491–15498.Google Scholar
  453. [453]
    Gao, Y. P.; Huang, K. J.; Shuai, H. L.; Liu, L. Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater. Lett.2017, 209, 319–322.Google Scholar
  454. [454]
    Guo, K. L.; Yang, F. F.; Cui, S. Z.; Chen, W. H.; Mi, L. W. Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv.2016, 6, 46523–46530.Google Scholar
  455. [455]
    Jiang, S.; Wu, J. H.; Ye, B. R.; Fan, Y. Y.; Ge, J. H.; Guo, Q. Y.; Huang, M. L. Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron.2018, 29, 4649–4657.Google Scholar
  456. [456]
    Shang, X.; Chi, J. Q.; Lu, S. S.; Gou, J. X.; Dong, B.; Li, X.; Liu, Y. R.; Yan, K. L.; Chai, Y. M.; Liu, C. G. Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Appl. Surf. Sci.2017, 392, 708–714.Google Scholar
  457. [457]
    Kirubasankar, B.; Vijayan, S.; Angaiah, S. Sonochemical synthesis of a 2D-2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain. Energy Fuels2019, 3, 467–477.Google Scholar
  458. [458]
    Wang, C. L.; Wu, X.; Xu, H. J.; Zhu, Y. J.; Liang, F.; Luo, C.; Xia, Y.; Xie, X. Y.; Zhang, J.; Duan, C. G. VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl. Phys. Lett.2019, 114, 023902.Google Scholar
  459. [459]
    Wang, M.; Zhang, L.; Zhong, Y. J.; Huang, M. R.; Zhen, Z.; Zhu, H. W. In situ electrodeposition of polypyrrole onto TaSe2 nanobelts quasi-arrays for high-capacitance supercapacitor. Nanoscale2018, 10, 17341–17346.Google Scholar
  460. [460]
    Li, L.; Li, Z. D.; Yoshimura, A.; Sun, C. L.; Wang, T. M.; Chen, Y. W.; Chen, Z. Z.; Littlejohn, A.; Xiang, Y.; Hundekar, P. et al. Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. Nat. Commun.2019, 10, 1764.Google Scholar
  461. [461]
    Bellani, S.; Wang, F. X.; Longoni, G.; Najafi, L.; Oropesa-Nuñez, R.; Del Rio Castillo, A. E.; Prato, M.; Zhuang, X. D.; Pellegrini, V.; Feng, X. L. et al. WS2-graphite dual-ion batteries. Nano Lett.2018, 18, 7155–7164.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rajesh Kumar
    • 1
    Email author
  • Sumanta Sahoo
    • 2
  • Ednan Joanni
    • 3
  • Rajesh Kumar Singh
    • 4
  • Ram Manohar Yadav
    • 5
  • Rajiv Kumar Verma
    • 6
  • Dinesh Pratap Singh
    • 7
  • Wai Kian Tan
    • 8
  • Angel Pérez del Pino
    • 9
  • Stanislav A. Moshkalev
    • 10
  • Atsunori Matsuda
    • 1
    Email author
  1. 1.Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashi, AichiJapan
  2. 2.Department of Applied ChemistryIndian Institute of Technology (ISM)DhanbadIndia
  3. 3.Centre for Information Technology Renato Archer (CTI)CampinasBrazil
  4. 4.School of Physical and Material SciencesCentral University of Himachal Pradesh (CUHP)Kangra, DharamshalaIndia
  5. 5.Department of PhysicsVSSD CollegeKanpurIndia
  6. 6.International CollegeOsaka UniversityOsakaJapan
  7. 7.Department of Physics and Millennium Institute for Research in Optics (MIRO)University of SantiagoSantiagoChile
  8. 8.Institute of Liberal Arts and SciencesToyohashi University of TechnologyToyohashi, AichiJapan
  9. 9.Instituto de Ciencia de Materiales de BarcelonaConsejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, BellaterraBarcelonaSpain
  10. 10.Centre for Semiconductor Components and Nanotechnology (CCS Nano)University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations