Advertisement

Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production

  • Xiuniang Tan
  • Jianling ZhangEmail author
  • Dongxing Tan
  • Jinbiao Shi
  • Xiuyan Cheng
  • Fanyu Zhang
  • Lifei Liu
  • Bingxing Zhang
  • Zhuizhui Su
  • Buxing Han
Research Article
  • 17 Downloads

Abstract

It is of great importance to develop facile strategies to synthesize catalysts with desirable compositions and structures for high-performance photocatalytic hydrogen generation. In this work, we put forward an ionic liquid assisted one-pot route for the synthesis of heteroatom-doped Pt/TiO2 composite material. This route is simple, environmentally benign and adjustable owing to the designable properties of ionic liquids. The as-synthesized Pt/TiO2 nanocrystals exhibit high activity and stability for the photocatalytic hydrogen generation under simulated solar irradiation. This method can be easily applied to the synthesis of various kinds of metal/TiO2 composites doped with desirable heteroatoms (e.g., F, Cl, Br, etc).

Keywords

ionic liquid titanium dioxide platinum heteroatom photocatalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the financial supports from the National Natural Science Foundation of China (Nos. 21525316 and 21673254), Ministry of Science and Technology of China (No. 2017YFA0403003), Chinese Academy of Sciences (No. QYZDY-SSW-SLH013), and Beijing Municipal Science & Technology Commission (No. Z181100004218004).

Supplementary material

12274_2019_2466_MOESM1_ESM.pdf (1.4 mb)
Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production

References

  1. [1]
    Pu, S. Y.; Zhu, R. X.; Ma, H.; Deng, D. L.; Pei, X. J.; Qi, F.; Chu, W. Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G. Appl. Catal. B: Environ. 2017, 218, 208–219.Google Scholar
  2. [2]
    Negishi, N.; Miyazaki, Y.; Kato, S.; Yang, Y. N. Effect of HCO3 concentration in groundwater on TiO2 photocatalytic water purification. Appl. Catal. B: Environ. 2019, 242, 449–459.Google Scholar
  3. [3]
    Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.Google Scholar
  4. [4]
    AlSalka, Y.; Hakki, A.; Schneider J.; Bahnemann, D. W. Co-catalyst-free photocatalytic hydrogen evolution on TiO2: Synthesis of optimized photocatalyst through statistical material science. Appl. Catal. B: Environ. 2018, 238, 422–433.Google Scholar
  5. [5]
    Komatsuda, S.; Asakura, Y.; Vequizo, J. J. M.; Yamakata, A.; Yin, S. Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels. Appl. Catal. B: Environ. 2018, 238, 358–364.Google Scholar
  6. [6]
    Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309–6315.Google Scholar
  7. [7]
    Kar, P.; Zeng, S.; Zhang, Y.; Vahidzadeh, E.; Manuel, A.; Kisslinger, R.; Alam, K. M.; Thakur, U. K.; Mahdi, N.; Kumar, P. et al. High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Appl. Catal. B: Environ. 2019, 243, 522–536.Google Scholar
  8. [8]
    Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902.Google Scholar
  9. [9]
    Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.Google Scholar
  10. [10]
    Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.Google Scholar
  11. [11]
    Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible light-driven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453–37460.Google Scholar
  12. [12]
    Nauth, A. M.; Schechtel, E.; Dören, R.; Tremel, W.; Opatz, T. TiO2 nanoparticles functionalized with non-innocent ligands allow oxidative photocyanation of amines with visible/near-infrared photons. J. Am. Chem. Soc. 2018, 140, 14169–14177.Google Scholar
  13. [13]
    Tasbihi, M.; Fresno, F.; Simon, U.; Villar-García, I. J.; Pérez-Dieste, V.; Escudero, C.; de la Peña O’Shea, V A. On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica. Appl. Catal. B: Environ. 2018, 239, 68–76.Google Scholar
  14. [14]
    Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751–6761.Google Scholar
  15. [15]
    Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.Google Scholar
  16. [16]
    Caudillo-Flores, U.; Muñoz-Batista, M. J.; Fernández-García, M.; Kubacka, A. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Appl. Catal. B: Environ. 2018, 238, 533–545.Google Scholar
  17. [17]
    Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B: Environ. 2018, 237, 491–503.Google Scholar
  18. [18]
    Zhang, Y. J.; Liu, J. M.; Zhang, Y.; Bi, Y. P. Relationship between interatomic electron transfer and photocatalytic activity of TiO2. Nano Energy 2018, 51, 504–512.Google Scholar
  19. [19]
    Fang, W. J.; Qin, Z.; Liu, J. Y.; Wei, Z. D.; Jiang, Z.; Shangguan, W. F. Photo-switchable pure water splitting under visible light over nano-Pt@P25 by recycling scattered photons. Appl. Catal. B: Environ. 2018, 236, 140–146.Google Scholar
  20. [20]
    Sinhamahapatra, A.; Lee, H. Y.; Shen, S. H.; Mao, S. S.; Yu, J. S. H-doped TiO2−x prepared with MgH2 for highly efficient solar-driven hydrogen production. Appl. Catal. B: Environ. 2018, 237, 613–621.Google Scholar
  21. [21]
    Yoo, S. J.; Jeon, T. Y.; Lee, K. S.; Park, K. W.; Sung, Y. E. Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem. Commun. 2010, 46, 794–796.Google Scholar
  22. [22]
    Blackmore, C. E.; Rees, N. V.; Palmer, R. E. Modular construction of size-selected multiple-core Pt-TiO2 nanoclusters for electro-catalysis. Phys. Chem. Chem. Phys. 2015, 17, 28005–28009.Google Scholar
  23. [23]
    di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. ACC. Chem. Res. 2014, 47, 3233–3241.Google Scholar
  24. [24]
    Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.Google Scholar
  25. [25]
    Vaiano, V.; Lara, M. A.; Iervolino, G.; Matarangolo, M.; Navio, J. A.; Hidalgo, M. C. Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure. J. Photochem. Photobiol. A: Chem. 2018, 365, 52–59.Google Scholar
  26. [26]
    Qiao, Y. X.; Ma, W. B.; Theyssen, N.; Chen, C.; Hou, Z. S. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881–6928.Google Scholar
  27. [27]
    Yang, Q. W.; Zhang, Z. Q.; Sun, X. G.; Hu, Y. S.; Xing, H. B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020–2064.Google Scholar
  28. [28]
    Sun, Z. Y.; Huang, X.; Muhler, M.; Schuhmann, W.; Ventosa, E. A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chem. Commun. 2014, 50, 5506–5509.Google Scholar
  29. [29]
    Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Shao, D.; Shi, J. B.; Zheng, L. R.; Zhang, J.; Yang, G Y.; Han, B. X. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production. ACS Appl. Mater. Interfaces 2018, 10, 16418–16423.Google Scholar
  30. [30]
    Sun, Z. Y.; Zhao, Y. F.; Xie, Y.; Tao, R. T.; Zhang, H. Y.; Huang, C. L.; Liu, Z. M. The solvent-free selective hydrogenation of nitrobenzene to aniline: An unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem. 2010, 12, 1007–1011.Google Scholar
  31. [31]
    Sun, Z. Y.; Masa, J.; Liu, Z. M.; Schuhmann, W.; Muhler, M. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem. -Eur. J. 2012, 18, 6972–6978.Google Scholar
  32. [32]
    Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2014, 2, 637–644.Google Scholar
  33. [33]
    Kim, G. J.; Kwon, D. W.; Hong, S. C. Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature. J. Phys. Chem. C 2016, 120, 17996–18004.Google Scholar
  34. [34]
    Nagai, Y.; Shinjoh, H.; Yokota, K. Oxidation selectivity between n-hexane and sulfur dioxide in diesel simulated exhaust gas over platinum-supported zirconia catalyst. Appl. Catal. B: Environ. 2002, 39, 149–155.Google Scholar
  35. [35]
    Yu, J. G.; Qi, L. F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 2010, 114, 13118–13125.Google Scholar
  36. [36]
    Nie, L. H.; Yu, J. G.; Li, X. Y.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 2013, 47, 2777–2783.Google Scholar
  37. [37]
    Iida, H.; Igarashi, A. Structure characterization of Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 catalysts for water gas shift reaction at low-temperature. Appl. Catal. A: Gen. 2006, 303, 192–198.Google Scholar
  38. [38]
    Aramendia, M. A.; Colmenares, J. C.; Marinas, A.; Marinas, J. M.; Moreno, J. M.; Navio, J. A.; Urbano, F. J. Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol. Catal. Today 2007, 128, 235–244.Google Scholar
  39. [39]
    Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.Google Scholar
  40. [40]
    Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 2015, 8, 3539–3544.Google Scholar
  41. [41]
    Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.Google Scholar
  42. [42]
    Fan, X. Y.; Zhang, Y.; Zhong, K. D. Charge transfer from internal electrostatic fields is superior to surface defects for 2,4-dichlorophenol degradation in K3−xNaxB6O10Br photocatalysts. Nanoscale 2018, 10, 20443–20452.Google Scholar
  43. [43]
    Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl. Catal. B: Environ. 2018, 225, 218–227.Google Scholar
  44. [44]
    Chiarello, G. L.; Dozzi, M. V.; Scavini, M.; Grunwaldt, J. D.; Selli, E. One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production. Appl. Catal. B: Environ. 2014, 160–161, 144–151.Google Scholar
  45. [45]
    Huo, Y. N.; Jin, Y.; Zhu, J.; Li, H. X. Highly active TiO2−xyNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Appl. Catal. B: Environ. 2009, 89, 543–550.Google Scholar
  46. [46]
    Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 2003, 42, 403–409.Google Scholar
  47. [47]
    Yang, G. D.; Jiang, Z.; Shi, H. H.; Jones, M. O.; Xiao, T. C.; Edwards, P. P.; Yan, Z. F. Study on the photocatalysis of F-S co-doped TiO2 prepared using solvothermal method. Appl. Catal. B: Environ. 2010, 96, 458–465.Google Scholar
  48. [48]
    Du, X.; He, J. H.; Zhao, Y. G. Facile preparation of F and N codoped pinecone-like titania hollow microparticles with visible light photocatalytic activity. J. Phys. Chem. C 2009, 113, 14151–14158.Google Scholar
  49. [49]
    Pan, J. Q.; Dong, Z. J.; Wang, B. B.; Jiang, Z. Y.; Zhao, C.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl. Catal. B: Environ. 2019, 242, 92–99.Google Scholar
  50. [50]
    Chen, X. Y.; Kuo, D. H.; Lu, D. F. N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem. Eng. J. 2016, 295, 192–200.Google Scholar
  51. [51]
    Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J. Mol. Catal. A: Chem. 2008, 282, 117–123.Google Scholar
  52. [52]
    Xi, B. J.; Verma, L. K.; Li, J.; Bhatia, C. S.; Danner, A. J.; Yang, H.; Zeng, H. C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Appl. Mater. Interfaces 2012, 4, 1093–1102.Google Scholar
  53. [53]
    Pastrana-Martinez, L. M.; Morales-Torres, S.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015, 77, 179–190.Google Scholar
  54. [54]
    Wang, Y.; Liu, X. Q.; Zheng, C. C.; Li, Y. C.; Jia, S. R.; Li, Z.; Zhao, Y. L. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance. Adv. Sci. 2018, 5, 1700844.Google Scholar
  55. [55]
    di Valentin, C.; Finazzi, E.; Pacchioni, G., Selloni, A.; Livraghi, S.; Czoska, A. M.; Paganini, M. C.; Giamello, E. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2. Chem. Mater. 2008, 20, 3706–3714.Google Scholar
  56. [56]
    Qin, L. P.; Wang, G. J.; Tan, Y. W. Plasmonic Pt nanoparticles-TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Sci. Rep. 2018, 8: 16198.Google Scholar
  57. [57]
    Liu, Y.; Zhang, P.; Tian, B. Z.; Zhang, J. L. Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde. ACS Appl. Mater. Interfaces 2015, 7, 13849–13858.Google Scholar
  58. [58]
    Kumar, S.; Khanchandani, S.; Thirumal, M.; Ganguli, A. K. Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. ACS Appl. Mater. Interfaces 2014, 6, 13221–13233.Google Scholar
  59. [59]
    Zhong, H.; Yang, C.; Fan, L. Z.; Fu, Z. H.; Yang, X.; Wang, X. C.; Wang, R. H. Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy Environ. Sci. 2019, 12, 418–426.Google Scholar
  60. [60]
    Yang, Y. R.; Ye, K.; Cao, D. X.; Gao, P.; Qiu, M.; Liu, L.; Yang, P. P. Efficient charge separation from F selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 19633–19638.Google Scholar
  61. [61]
    Chu, J. Y.; Sun, Y. C.; Han, X. J.; Zhang, B.; Du, Y. C.; Song, B.; Xu, P. Mixed titanium oxide strategy for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2019, 11, 18475–18482.Google Scholar
  62. [62]
    Chen, Y.; Li, W. Z.; Wang, J. Y.; Gan, Y. L.; Liu, L.; Ju, M. T. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B: Environ. 2016, 191, 94–105.Google Scholar
  63. [63]
    Zhou, J.; Chen, W. C.; Sun, C. Y.; Han, L.; Qin, C.; Chen, M. M.; Wang, X. L.; Wang, E. B.; Su, Z. M. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 11689–11695.Google Scholar
  64. [64]
    Tan, D. X.; Zhang, J. L.; Shi, J. B.; Li, S. P.; Zhang, B. X.; Tan, X. N.; Zhang, F. Y.; Liu, L. F.; Shao, D.; Han, B. X. Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on N-doped TiO2 nanosheet. ACS Appl. Mater. Interfaces 2018, 10, 24516–24522.Google Scholar
  65. [65]
    Dozzi, M. V.; Candeo, A.; Marra, G.; D’Andrea, C.; Valentini, G.; Selli, E. Effects of photodeposited gold vs. platinum nanoparticles on N, F-doped TiO2 photoactivity: A time-resolved photoluminescence investigation. J. Phys. Chem. C 2018, 122, 14326–14335.Google Scholar
  66. [66]
    Martinez, L.; Soler, L.; Angurell, I.; Llorca, J. Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Appl. Catal. B: Environ. 2019, 248, 504–514.Google Scholar
  67. [67]
    Ma, D. D.; Sun, D. K.; Zou, Y. J.; Mao, S. M.; Lv, Y. X.; Wang, Y.; Li, J.; Shi, J. W. The synergy between electronic anchoring effect and internal electric field in CdS quantum dots decorated dandelion-like Fe-CeO2 nanoflowers for improved photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 549, 179–188.Google Scholar
  68. [68]
    Xu, T. T.; Wang, S. L.; Li, L.; Liu, X. Dual templated synthesis of tri-modal porous SrTiO3/TiO2@ carbon composites with enhanced photocatalytic activity. Appl. Catal. A: Gen. 2019, 575, 132–141.Google Scholar
  69. [69]
    Ma, D. D.; Shi, J. W.; Sun, D. K.; Zou, Y. J.; Cheng, L. H.; He, C.; Wang, H. K.; Niu, C. M.; Wang, L. Z. Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: The insight into the roles of hollow channel and Au nanoparticles. Appl. Catal. B: Environ. 2019, 244, 748–757.Google Scholar
  70. [70]
    Xia, Y. Z.; Liang, S. J.; Wu, L.; Wang, X. X. Ultrasmall NiS decorated HNb3O8 nanosheeets as highly efficient photocatalyst for H2 evolution reaction. Catal. Today 2019, 330, 195–202.Google Scholar
  71. [71]
    Liu, Y. Z.; Zhang, H. Y.; Ke, J.; Zhang, J. Q.; Tian, W. J.; Xu, X. Y.; Duan, X. G.; Sun, H. Q.; Tade, M. O.; Wang, S. B. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 2018, 228, 64–74.Google Scholar
  72. [72]
    Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiuniang Tan
    • 1
    • 2
  • Jianling Zhang
    • 1
    • 2
    • 3
    Email author
  • Dongxing Tan
    • 1
    • 2
  • Jinbiao Shi
    • 1
    • 2
  • Xiuyan Cheng
    • 1
    • 2
  • Fanyu Zhang
    • 1
    • 2
  • Lifei Liu
    • 1
    • 2
  • Bingxing Zhang
    • 1
    • 2
  • Zhuizhui Su
    • 1
    • 2
  • Buxing Han
    • 1
    • 2
    • 3
  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Physical Science LaboratoryHuairou National Comprehensive Science CenterBeijingChina

Personalised recommendations