Construction of RNA nanotubes

  • Hui Li
  • Shaoying Wang
  • Zhouxiang Ji
  • Congcong Xu
  • Lyudmila S. Shlyakhtenko
  • Peixuan GuoEmail author
Research Article


Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.


RNA nanotechnology peptide sensing RNA nanotube nanobiotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research was supported by NIH grants R01 EB012135 and R01 EB019036. P. G.'s Sylvan G. Frank Endowed Chair position in Pharmaceutics and Drug Delivery is funded by the CM Chen Foundation. We would like to thank Lora McBride and Dr. Catherine Hunt for the manuscript modification.

Supplementary material

12274_2019_2463_MOESM1_ESM.pdf (890 kb)
Construction of RNA nanotubes


  1. [1]
    Koman, V. B.; Lew, T. T. S.; Wong, M. H.; Kwak, S. Y.; Giraldo, J. P.; Strano, M. S. Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta. Lab Chip 2017, 17, 4015–4024.CrossRefGoogle Scholar
  2. [2]
    Li, Y.; Denny, P.; Ho, C. M.; Montemagno, C.; Shi, W.; Qi, F.; Wu, B.; Wolinsky, L.; Wong, D. T. The oral fluid MEMS/NEMS chip (OFMNC): Diagnostic & translational applications. Adv. Dent. Res. 2005, 18, 3–5.CrossRefGoogle Scholar
  3. [3]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  4. [4]
    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.CrossRefGoogle Scholar
  5. [5]
    Colinge, J. P.; Lee, C. W.; Afzalian, A.; Akhavan, N. D.; Yan, R.; Ferain, I.; Razavi, P.; O'Neill, B.; Blake, A.; White, M. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225–229.CrossRefGoogle Scholar
  6. [6]
    Koehne, J.; Chen, H.; Li, J.; Cassell, A. M.; Ye, Q.; Ng, H. T.; Han, J.; Meyyappan, M. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 2003, 14, 1239–1245.CrossRefGoogle Scholar
  7. [7]
    Fritzsche, W.; Taton, T. A. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 2003, 14, R63–R73.CrossRefGoogle Scholar
  8. [8]
    McRae, M. P.; Simmons, G. W.; Wong, J.; Shadfan, B.; Gopalkrishnan, S.; Christodoulides, N.; McDevitt, J. T. Programmable bio-nano-chip system: A flexible point-of-care platform for bioscience and clinical measurements. Lab Chip 2015, 15, 4020–4031.CrossRefGoogle Scholar
  9. [9]
    Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215.CrossRefGoogle Scholar
  10. [10]
    Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.CrossRefGoogle Scholar
  11. [11]
    Ramgir, N. S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722.CrossRefGoogle Scholar
  12. [12]
    Yue, H. Y.; Zhang, H.; Huang, S.; Lin, X. Y.; Gao, X.; Chang, J.; Yao, L. H.; Guo, E. J. Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron. 2017, 89, 592–597.CrossRefGoogle Scholar
  13. [13]
    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  14. [14]
    Martel, S.; Felfoul, O.; Mathieu, J. B.; Chanu, A.; Tamaz, S.; Mohammadi, M.; Mankiewicz, M.; Tabatabaei, N. MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Rob. Res. 2009, 28, 1169–1182.CrossRefGoogle Scholar
  15. [15]
    Qiu, M. K.; Khisamutdinov, E.; Zhao, Z. Y.; Pan, C.; Choi, J. W.; Leontis, N. B.; Guo, P. X. RNA nanotechnology for computer design and in vivo computation. Philos. Trans. Roy. Soc. A Math. Phys. Sci. 2013, 371, 20120310.CrossRefGoogle Scholar
  16. [16]
    Goldsworthy, V.; LaForce, G.; Abels, S.; Khisamutdinov, E. F. Fluorogenic RNA aptamers: A nano-platform for fabrication of simple and combinatorial logic gates. Nanomaterials 2018, 8, 984.CrossRefGoogle Scholar
  17. [17]
    Lee, T.; Yagati, A. K.; Pi, F. M.; Sharma, A.; Choi, J. W.; Guo, P. X. Construction of RNA-quantum dot chimera for nanoscale resistive biomemory application. ACS Nano 2015, 9, 6675–6682.CrossRefGoogle Scholar
  18. [18]
    Sung, J. H.; Kam, C.; Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010, 10, 446–455.CrossRefGoogle Scholar
  19. [19]
    Hu, Y.; Fine, D. H.; Tasciotti, E.; Bouamrani, A.; Ferrari, M. Nanodevices in diagnostics. Nanomed. Nanobiotechnol. 2011, 3, 11–32.CrossRefGoogle Scholar
  20. [20]
    Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.CrossRefGoogle Scholar
  21. [21]
    Jain, K. K. Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 2003, 3, 153–161.CrossRefGoogle Scholar
  22. [22]
    Han, D.; Park, Y.; Kim, H.; Lee, J. B. Self-assembly of free-standing RNA membranes. Nat. Commun. 2014, 5, 4367.CrossRefGoogle Scholar
  23. [23]
    Shasha, C.; Henley, R. Y.; Stoloff, D. H.; Rynearson, K. D.; Hermann, T.; Wanunu, M. Nanopore-based conformational analysis of a viral RNA drug target. ACS Nano 2014, 8, 6425–6430.CrossRefGoogle Scholar
  24. [24]
    Borzooeian, Z.; Taslim, M. E.; Ghasemi, O.; Rezvani, S.; Borzooeian, G.; Nourbakhsh, A. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. PLoS One 2018, 13, e0197972.CrossRefGoogle Scholar
  25. [25]
    Navas, H.; Picher, M.; Andrieux-Ledier, A.; Fossard, F.; Michel, T.; Kozawa, A.; Maruyama, T.; Anglaret, E.; Loiseau, A.; Jourdain, V. Unveiling the evolutions of nanotube diameter distribution during the growth of single-walled carbon nanotubes. ACS Nano 2017, 11, 3081–3088.CrossRefGoogle Scholar
  26. [26]
    Chen, G. H.; Seki, Y.; Kimura, H.; Sakurai, S.; Yumura, M.; Hata, K.; Futaba, D. N. Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition. Sci. Rep. 2014, 4, 3804.CrossRefGoogle Scholar
  27. [27]
    Konduri, S.; Mukherjee, S.; Nair, S. Controlling nanotube dimensions: Correlation between composition, diameter, and internal energy of singlewalled mixed oxide nanotubes. ACS Nano 2007, 1, 393–402.CrossRefGoogle Scholar
  28. [28]
    Thill, A.; Maillet, P.; Guiose, B.; Spalla, O.; Belloni, L.; Chaurand, P.; Auffan, M.; Olivi, L.; Rose, J. Physico-chemical control over the singleor double-wall structure of aluminogermanate imogolite-like nanotubes. J. Am. Chem. Soc. 2012, 134, 3780–3786.CrossRefGoogle Scholar
  29. [29]
    Guo, P. X. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 2010, 5, 833–842.CrossRefGoogle Scholar
  30. [30]
    Li, H.; Lee, T.; Dziubla, T.; Pi, F. M.; Guo, S. J.; Xu, J.; Li, C.; Haque, F.; Liang, X. J.; Guo, P. X. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631–655.CrossRefGoogle Scholar
  31. [31]
    Shukla, G. C.; Haque, F.; Tor, Y.; Wilhelmsson, L. M.; Toulmé, J. J.; Isambert, H.; Guo, P. X.; Rossi, J. J.; Tenenbaum, S. A.; Shapiro, B. A. A boost for the emerging field of RNA nanotechnology. ACS Nano 2011, 5, 3405–3418.CrossRefGoogle Scholar
  32. [32]
    Kim, H.; Park, Y.; Lee, J. B. Self-assembled messenger RNA nanoparticles (MRNA-NPs) for efficient gene expression. Sci. Rep. 2015, 5, 12737.CrossRefGoogle Scholar
  33. [33]
    Boerneke, M. A.; Dibrov, S. M.; Hermann, T. Crystal-structure-guided design of self-assembling RNA nanotriangles. Angew. Chem., Int. Ed. 2016, 55, 4097–4100.CrossRefGoogle Scholar
  34. [34]
    Shu, Y.; Pi, F. M.; Sharma, A.; Rajabi, M.; Haque, F.; Shu, D.; Leggas, M.; Evers, B. M.; Guo, P. X. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 74–89.CrossRefGoogle Scholar
  35. [35]
    Shukla, N.; Yan, I. K.; Patel, T. Multiplexed detection and quantitation of extracellular vesicle RNA expression using nanostring. In Extracellular RNA: Methods and Protocols. Patel, T., Ed.; Humana Press: New York, NY, 2018; pp 177–185.CrossRefGoogle Scholar
  36. [36]
    Zhang, Y. J.; Leonard, M.; Shu, Y.; Yang, Y. G.; Shu, D.; Guo, P. X.; Zhang, X. T. Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano 2017, 11, 335–346.CrossRefGoogle Scholar
  37. [37]
    Han, S.; Kim, H.; Lee, J. B. Library SiRNA-generating RNA nanosponges for gene silencing by complementary rolling circle transcription. Sci. Rep. 2017, 7, 10005.CrossRefGoogle Scholar
  38. [38]
    Xu, L. L.; Peng, Q. Y.; Zhu, Y.; Zhao, X.; Yang, M. L.; Wang, S. S.; Xue, F. H.; Yuan, Y.; Lin, Z. S.; Xu, F. et al. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn. Nanoscale 2019, 11, 8124–8132.CrossRefGoogle Scholar
  39. [39]
    Sajid, M. I.; Jamshaid, U.; Jamshaid, T.; Zafar, N.; Fessi, H.; Elaissari, A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int. J. Pharm. 2016, 501, 278–299.CrossRefGoogle Scholar
  40. [40]
    Serra, M.; Arenal, R.; Tenne, R. An overview of the recent advances in inorganic nanotubes. Nanoscale 2019, 11, 8073–8090.CrossRefGoogle Scholar
  41. [41]
    Geng, R.; Lu, D. Q.; Lai, Y.; Wu, S. F.; Xu, Z. A.; Zhang, W. Peptide nanotube for carbon dioxide chemisorption with regeneration properties and water compatibility. Chem. Commun. 2019, 55, 3797–3800.CrossRefGoogle Scholar
  42. [42]
    De Santis, S.; Novelli, F.; Sciubba, F.; Casciardi, S.; Sennato, S.; Morosetti, S.; Scipioni, A.; Masci, G. Switchable length nanotubes from a self-assembling PH and thermosensitive linear L,D-peptide-polymer conjugate. J. Colloid Interface Sci. 2019, 547, 256–266.CrossRefGoogle Scholar
  43. [43]
    Burns, J. R.; Stulz, E.; Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 2013, 13, 2351–2356.CrossRefGoogle Scholar
  44. [44]
    Burns, J. R.; Göpfrich, K.; Wood, J. W.; Thacker, V. V.; Stulz, E.; Keyser, U. F.; Howorka, S. Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem., Int. Ed. 2013, 52, 12069–12072.CrossRefGoogle Scholar
  45. [45]
    Bell, N. A.; Keyser, U. F. Nanopores formed by DNA origami: A review. FEBS Lett. 2014, 588, 3564–3570.CrossRefGoogle Scholar
  46. [46]
    Geary, C.; Rothemund, P. W. K.; Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014, 345, 799–804.CrossRefGoogle Scholar
  47. [47]
    Rothemund, P. W. K.; Ekani-Nkodo, A.; Papadakis, N.; Kumar, A.; Fygenson, D. K.; Winfree, E. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 2004, 126, 16344–16352.CrossRefGoogle Scholar
  48. [48]
    Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; LaBean, T. H.; Reif, J. H. Programming DNA tube circumferences. Science 2008, 321, 824–826.CrossRefGoogle Scholar
  49. [49]
    Burns, J. R.; Seifert, A.; Fertig, N.; Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 2016, 11, 152–156.CrossRefGoogle Scholar
  50. [50]
    Haque, F.; Li, J. H.; Wu, H. C.; Liang, X. J.; Guo, P. X. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 2013, 8, 56–74.CrossRefGoogle Scholar
  51. [51]
    Deamer, D.; Akeson, M.; Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016, 34, 518–524.CrossRefGoogle Scholar
  52. [52]
    Wang, S. Y.; Haque, F.; Rychahou, P. G.; Evers, B. M.; Guo, P. X. Engineered nanopore of phi29 DNA-packaging motor for real-time detection of single colon cancer specific antibody in serum. ACS Nano 2013, 7, 9814–9822.CrossRefGoogle Scholar
  53. [53]
    Thakur, A. K.; Movileanu, L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 2019, 37, 96–101.CrossRefGoogle Scholar
  54. [54]
    Fahie, M. A.; Chen, M. Electrostatic interactions between OmpG nanopore and analyte protein surface can distinguish between glycosylated isoforms. J. Phys. Chem. B 2015, 119, 10198–10206.CrossRefGoogle Scholar
  55. [55]
    Lyubchenko, Y.; Shlyakhtenko, L. S.; Ando, T. Imaging of nucleic acids with atomic force microscopy. Methods 2011, 54, 274–283.CrossRefGoogle Scholar
  56. [56]
    Wendell, D.; Jing, P.; Geng, J.; Subramaniam, V.; Lee, T. J.; Montemagno, C.; Guo, P. X. Translocation of double-stranded DNA through membraneadapted phi29 motor protein nanopores. Nat. Nanotechnol. 2009, 4, 765–772.CrossRefGoogle Scholar
  57. [57]
    Jing, P.; Haque, F.; Vonderheide, A. P.; Montemagno, C.; Guo, P. X. Robust properties of membrane-embedded connector channel of bacterial virus phi29 DNA packaging motor. Mol. Biosyst. 2010, 6, 1844–1852.CrossRefGoogle Scholar
  58. [58]
    Haque, F.; Geng, J.; Montemagno, C.; Guo, P. X. Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA. Nat. Protoc. 2013, 8, 373–392.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hui Li
    • 1
    • 2
    • 3
    • 4
  • Shaoying Wang
    • 1
    • 2
    • 3
    • 4
  • Zhouxiang Ji
    • 1
    • 2
    • 3
    • 4
  • Congcong Xu
    • 1
    • 2
    • 3
    • 4
  • Lyudmila S. Shlyakhtenko
    • 5
  • Peixuan Guo
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Center for RNA Nanobiotechnology and NanomedicineThe Ohio State UniversityColumbusUSA
  2. 2.Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State UniversityColumbusUSA
  3. 3.Department of Physiology & Cell Biology, College of MedicineThe Ohio State UniversityColumbusUSA
  4. 4.Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  5. 5.UNMC Nanoimaging Core Facility, Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations