In situ fabrication of organic electrochemical transistors on a microfluidic chip

  • Jianlong Ji
  • Mangmang Li
  • Zhaowei Chen
  • Hongwang Wang
  • Xiaoning Jiang
  • Kai Zhuo
  • Ying Liu
  • Xing Yang
  • Zhen Gu
  • Shengbo SangEmail author
  • Yang ShuEmail author
Research Article


Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating current (AC) electrodeposition to fabricate OECTs in situ on a microfluid chip. With this method, the organic semiconductor (OS) layer with a channel length of 8 ώm was readily prepared without requiring the post-bonding process in the conventional construction of microfluidic chips. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/graphene quantum dots (PEDOT:PSS/GQDs) composites with different morphologies, such as microfilms, nanodendrites and nanowires were electropolymerized. The mass transfer process of the electropolymerization reaction was evidenced to be diffusion limited. Morphologies, growth directions, and chemical structures of OS layers could be tuned by the amplitude and the frequency of the AC voltage. Transfer and output characteristic curves of OECTs were measured on the microfluidic chip. The maximum transconductance, on/off current ratio and threshold voltage measured in the experiment was 1.58 mS, 246, and 0.120 V, respectively.


electrodeposition in situ microfluidic chip PEDOT:PSS/GQDs composite transistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (Nos. 51705354, 51622507, and 61671271); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Nos. 183290224-S and 201802029).

Supplementary material

12274_2019_2462_MOESM1_ESM.mp4 (15 mb)
Supplementary material, approximately 15.0 MB.
12274_2019_2462_MOESM2_ESM.mp4 (6.8 mb)
Supplementary material, approximately 6.82 MB.
12274_2019_2462_MOESM3_ESM.pdf (4.9 mb)
In situ fabrication of organic electrochemical transistors on a microfluidic chip


  1. [1]
    Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.CrossRefGoogle Scholar
  2. [2]
    Tang, H.; Yan, F.; Lin, P.; Xu, J. B.; Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272.CrossRefGoogle Scholar
  3. [3]
    Tang, H.; Lin, P.; Chan, H. L. W.; Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 2011, 26, 4559–4563.CrossRefGoogle Scholar
  4. [4]
    Lin, P.; Luo, X. T.; Hsing, I. M.; Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 2011, 23, 4035–4040.CrossRefGoogle Scholar
  5. [5]
    Hempel, F.; Law, J. K. Y.; Nguyen, T. C.; Munief, W.; Lu, X. L.; Pachauri, V.; Susloparova, A.; Vu, X. T.; Ingebrandt, S. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 2017, 93, 132–138.CrossRefGoogle Scholar
  6. [6]
    Lin, P.; Yan, F.; Yu, J. J.; Chan, H. L. W.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655–3660.CrossRefGoogle Scholar
  7. [7]
    Gu, X.; Yao, C. L.; Liu, Y.; Hsing, I. M. 16-channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential. Adv. Healthc. Mater. 2016, 5, 2345–2351.CrossRefGoogle Scholar
  8. [8]
    Liang, Y. Y.; Ernst, M.; Brings, F.; Kireev, D.; Maybeck, V.; Offenhäusser, A.; Mayer, D. High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 2018, 7, 1800304.CrossRefGoogle Scholar
  9. [9]
    White, S. P.; Dorfman, K. D.; Frisbie, C. D. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors. Anal. Chem. 2015, 87, 1861–1866.CrossRefGoogle Scholar
  10. [10]
    Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, 2904.Google Scholar
  11. [11]
    Curto, V. F.; Marchiori, B.; Hama, A.; Pappa, A. M.; Ferro, M. P.; Braendlein, M.; Rivnay, J.; Fiocchi, M.; Malliaras, G. G.; Ramuz, M. et al. Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsyst. Nanoeng. 2017, 3, 17028.CrossRefGoogle Scholar
  12. [12]
    Liao, Z. R.; Wang, J. F.; Zhang, P. J.; Zhang, Y.; Miao, Y. F.; Gao, S. M.; Deng, Y. L.; Geng, L. N. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens. Bioelectron. 2018, 121, 272–280.CrossRefGoogle Scholar
  13. [13]
    Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846.CrossRefGoogle Scholar
  14. [14]
    Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414.CrossRefGoogle Scholar
  15. [15]
    Zhang, M.; Lin, P.; Yang, M.; Yan, F. Fabrication of organic electrochemical transistor arrays for biosensing. Biochim. Biophys. Acta 2013, 1830, 4402–4406.CrossRefGoogle Scholar
  16. [16]
    DeFranco, J. A.; Schmidt, B. S.; Lipson, M.; Malliaras, G. G. Photolithographic patterning of organic electronic materials. Org. Electron. 2006, 7, 22–28.CrossRefGoogle Scholar
  17. [17]
    Sessolo, M.; Khodagholy, D.; Rivnay, J.; Maddalena, F.; Gleyzes, M.; Steidl, E.; Buisson, B.; Malliaras, G. G. Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 2013, 25, 2135–2139.CrossRefGoogle Scholar
  18. [18]
    Curto, V. F.; Ferro, M. P.; Mariani, F.; Scavetta, E.; Owens, R. M. A planar impedance sensor for 3D spheroids. Lab Chip 2018, 18, 933–943.CrossRefGoogle Scholar
  19. [19]
    Pappa, A. M.; Curto, V. F.; Braendlein, M.; Strakosas, X.; Donahue, M. J.; Fiocchi, M.; Malliaras, G. G.; Owens, R. M. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 2016, 5, 2295–2302.CrossRefGoogle Scholar
  20. [20]
    Guo, X.; Liu, J.; Liu, F. Y.; She, F.; Zheng, Q.; Tang, H.; Ma, M.; Yao, S. Z. Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sens. Actuators B 2017, 240, 1075–1082.CrossRefGoogle Scholar
  21. [21]
    Fonseca, S. M.; Moreira, T.; Jorge Parola, A.; Pinheiro, C.; Laia, C. A. T. PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices. Sol. Energy Mater. Sol. Cells 2017, 159, 94–101.CrossRefGoogle Scholar
  22. [22]
    Shi, Y. D.; Zhang, Y.; Tang, K.; Song, Y. B.; Cui, J. W.; Shu, X.; Wang, Y.; Liu, J. Q.; Wu, Y. C. In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 2018, 8, 13679–13685.Google Scholar
  23. [23]
    Demuru, S.; Deligianni, H. Surface PEDOT:nafion coatings for enhanced dopamine, serotonin and adenosine sensing. J. Electrochem. Soc. 2017, 164, G129–G138.CrossRefGoogle Scholar
  24. [24]
    Si, W. M.; Lei, W.; Han, Z.; Hao, Q. L.; Zhang, Y. H.; Xia, M. Z. Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/ nitrogen-doped graphene composites. Sens. Actuator B 2014, 199, 154–160.CrossRefGoogle Scholar
  25. [25]
    Song, J. C.; Noh, H.; Lee, J.; Nah, I. W.; Cho, W. I.; Kim, H. T. In situ coating of poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries. J. Power Sources 2016, 332, 72–78.Google Scholar
  26. [26]
    Si, W. M.; Lei, W.; Han, Z.; Zhang, Y. H.; Hao, Q. L.; Xia, M. Z. Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene oxide composites. Sens. Actuator B 2014, 193, 823–829.CrossRefGoogle Scholar
  27. [27]
    Koizumi, Y.; Shida, N.; Ohira, M.; Nishiyama, H.; Tomita, I.; Inagi, S. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks. Nat. Commun. 2016, 7, 10404.Google Scholar
  28. [28]
    Yang, X.; Wang, Q.; Fan, J. R.; Zhang, M.; Zhou, Z. Y.; Ji, J. L. Extremely sensitive sers detection through the one-step fabrication of a composite nanostructure of substrate and analyte. ECS Electrochem. Lett. 2015, 4, B17–B20.CrossRefGoogle Scholar
  29. [29]
    Ji, J. L.; Li, P. W.; Sang, S. B.; Zhang, W. D.; Zhou, Z. Y.; Yang, X.; Dong, H. L.; Li, G.; Hu, J. Electrodeposition of Au/Ag bimetallic dendrites assisted by faradaic AC-electroosmosis flow. AIP Adv. 2014, 4, 031329.CrossRefGoogle Scholar
  30. [30]
    Zhang, M.; Yang, X.; Zhou, Z. Y.; Ye, X. Y. Controllable growth of gold nanowires and nanoactuators via high-frequency AC electrodeposition. Electrochem. Commun. 2013, 27, 133–136.CrossRefGoogle Scholar
  31. [31]
    Ji, J. L.; Zhou, Z. Y.; Yang, X.; Zhang, W. D.; Sang, S. B.; Li, P. W. One-dimensional nano-interconnection formation. Small 2014, 9, 3014–3029.CrossRefGoogle Scholar
  32. [32]
    Chen, S.; Hai, X.; Xia, C.; Chen, X. W.; Wang, J. H. Preparation of excitation-independent photoluminescent graphene quantum dots with visible-light excitation/emission for cell imaging. Chem. - Eur. J. 2013, 19, 15918–15923.CrossRefGoogle Scholar
  33. [33]
    Oberhammer, J.; Stemme, G. BCB contact printing for patterned adhesive full-wafer bonded 0-level packages. J. Microelectromech. Syst. 2005, 14, 419–425.CrossRefGoogle Scholar
  34. [34]
    Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M. et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133.Google Scholar
  35. [35]
    Stavrinidou, E.; Leleux, P.; Rajaona, H.; Khodagholy, D.; Rivnay, J.; Lindau, M.; Sanaur, S.; Malliaras, G. G. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 2013, 25, 4488–4493.CrossRefGoogle Scholar
  36. [36]
    Garreau, S.; Duvail, J. L.; Louarn, G. Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium. Synth. Met. 2001, 125, 325–329.CrossRefGoogle Scholar
  37. [37]
    Heinze, J.; Frontana- Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 11 0, 4724–4771.Google Scholar
  38. [38]
    Castagnola, V.; Bayon, C.; Descamps, E.; Bergaud, C. Morphology and conductivity of pedot layers produced by different electrochemical routes. Synth. Met. 2014, 189, 7–16.CrossRefGoogle Scholar
  39. [39]
    Randriamahazaka, H.; Noël, V.; Chevrot, C. Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. J. Electroanal. Chem. 1999, 472, 103–111.CrossRefGoogle Scholar
  40. [40]
    Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B. On the origin of the so-called nucleation loop during electropolymerization of conducting polymers. J. Phys. Chem. B 2007, 111, 989–997.CrossRefGoogle Scholar
  41. [41]
    Du, X.; Wang, Z. Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochim. Acta 2003, 48, 1713–1717.CrossRefGoogle Scholar
  42. [42]
    Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.CrossRefGoogle Scholar
  43. [43]
    Tamburri, E.; Guglielmotti, V.; Orlanducci, S.; Terranova, M. L. Structure and I2/I- redox catalytic behaviour of PEDOT-PSS films electropolymerized in aqueous medium: Implications for convenient counter electrodes in DSSC. Inorg. Chim. Acta 2011, 377, 170–176.CrossRefGoogle Scholar
  44. [44]
    Youk, J. H.; Locklin, J.; Xia, C. J.; Park, M. K.; Advincula, R. Preparation of gold nanoparticles from a polyelectrolyte complex solution of terthiophene amphiphiles. Langmuir 2001, 17, 4681–4683.CrossRefGoogle Scholar
  45. [45]
    Schweiss, R.; Lubben, J. F.; Johannsmann, D.; Knoll, W. Electropolymerization of ethylene dioxythiophene (EDOT) in micellar aqueous solutions studied by electrochemical quartz crystal microbalance and surface plasmon resonance. Electrochim. Acta 2005, 50, 2849–2856.CrossRefGoogle Scholar
  46. [46]
    Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17–27.CrossRefGoogle Scholar
  47. [47]
    Melato, A. I.; Viana, A. S.; Abrantes, L. M. Different steps in the electrosynthesis of poly(3,4-ethylenedioxythiophene) on platinum. Electrochim. Acta 2008, 54, 590–597.CrossRefGoogle Scholar
  48. [48]
    Orazem, M. E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: New York, 2008.CrossRefGoogle Scholar
  49. [49]
    Thapa, P. S.; Ackerson, B. J.; Grischkowsky, D. R.; Flanders, B. N. Directional growth of metallic and polymeric nanowires. Nanotechnology 2009, 20, 235307.CrossRefGoogle Scholar
  50. [50]
    Botasini, S.; Mendez, E. Limited diffusion and cell dimensions in a micrometer layer of solution: An electrochemical impedance spectroscopy study. ChemElectroChem 2017, 4, 1891–1895.CrossRefGoogle Scholar
  51. [51]
    Scharifker, B. R.; García- Pastoriza, E.; Marino, W. The growth of polypyrrole films on electrodes. J. Electroanal. Chem. 1991, 300, 85–98.CrossRefGoogle Scholar
  52. [52]
    Garfias-García, E.; Romero-Romo, M.; Ramírez-Silva, M. T.; Morales, J.; Palomar-Pardavé, M. Mechanism and kinetics of the electrochemical formation of polypyrrole under forced convection conditions. J. Electroanal. Chem. 2008, 613, 67–79.CrossRefGoogle Scholar
  53. [53]
    Velev, O. D.; Gangwal, S.; Petsev, D. N. Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2009, 105, 213–246.CrossRefGoogle Scholar
  54. [54]
    Velev, O. D.; Bhatt, K. H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2006, 2, 738–750.CrossRefGoogle Scholar
  55. [55]
    Velev, O. D. Assembly of electrically functional microstructures from colloidal particles. In Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles. Caruso, F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004.Google Scholar
  56. [56]
    Jones, T. B.; Jones, T. B. Electromechanics of Particles; Cambridge University Press: Cambridge, 2005.Google Scholar
  57. [57]
    Du, Y.; Cui, X.; Li, L.; Tian, H.; Yu, W. X.; Zhou, Z. X. Dielectric properties of DMSO-doped-PEDOT:PSS at THz frequencies. Phys. Status Solidi B 2017, 255, 1700547.CrossRefGoogle Scholar
  58. [58]
    Randriamahazaka, H.; Sini, G.; Tran Van, F. Electrodeposition mechanisms and electrochemical behavior of poly(3,4-ethylenedithiathiophene). J. Phys. Chem. C 2007, 111, 4553–4560.CrossRefGoogle Scholar
  59. [59]
    Gamburg, Y. D.; Zangari, G. Theory and Practice of Metal Electrodeposition; Springer: New York, 2011.CrossRefGoogle Scholar
  60. [60]
    Sakmeche, N.; Aeiyach, S.; Aaron, J. J.; Jouini, M.; Lacroix, J. C.; Lacaze, P. C. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 1999, 15, 2566–2574.CrossRefGoogle Scholar
  61. [61]
    Garreau, S.; Louam, G.; Lefrant, S.; Buisson, J. P.; Froyer, G. Optical study and vibrational analysis of the poly (3,4-ethylenedioxythiophene) (PEDT). Synth. Met. 1999, 101, 312–313.CrossRefGoogle Scholar
  62. [62]
    Akimoto, M.; Furukawa, Y.; Takeuchi, H.; Harada, I.; Soma, Y.; Soma, M. Correlation between vibrational spectra and electrical conductivity of polythiophene. Synth. Met. 1986, 15, 353–360.CrossRefGoogle Scholar
  63. [63]
    Alam, M. M.; Wang, J.; Guo, Y. Y.; Lee, S. P.; Tseng, H. S. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B 2005, 109, 12777–12784.CrossRefGoogle Scholar
  64. [64]
    Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544.CrossRefGoogle Scholar
  65. [65]
    Inal, S.; Malliaras, G. G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 2017, 8, 1767.Google Scholar
  66. [66]
    Pathak, C. S.; Singh, J. P.; Singh, R. Preparation of novel graphene-PEDOT:PSS nanocomposite films and fabrication of heterojunction diodes with n-Si. Chem. Phys. Lett. 2018, 694, 75–81.CrossRefGoogle Scholar
  67. [67]
    Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575.Google Scholar
  68. [68]
    Kepić, D. P.; Marković, Z. M.; Jovanović, S. P.; Peruško, D. B.; Budimir, M. D.; Holclajtner-Antunović, I. D.; Pavlović, V. B.; Marković, B. M. T. Preparation of PEDOT: PSS thin films doped with graphene and graphene quantum dots. Synth. Met. 2014, 198, 150–154.CrossRefGoogle Scholar
  69. [69]
    Tarabella, G.; Balducci, A. G.; Coppedè, N.; Marasso, S.; D'Angelo, P.; Barbieri, S.; Cocuzza, M.; Colombo, P.; Sonvico, F.; Mosca, R. et al. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim. Biophys. Acta 2013, 1830, 4374–4380.CrossRefGoogle Scholar
  70. [70]
    Kim, S. H.; Hong, K.; Lee, K. H.; Frisbie, C. D. Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl. Mater. Interfaces 2013, 5, 6580–6585.CrossRefGoogle Scholar
  71. [71]
    Louet, C.; Cantin, S.; Dudon, J. P.; Aubert, P. H.; Vidal, F.; Chevrot, C. A comprehensive study of infrared reflectivity of poly(3,4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Sol. Energy Mater. Sol. Cells 2015, 143, 141–151.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jianlong Ji
    • 1
    • 2
  • Mangmang Li
    • 1
  • Zhaowei Chen
    • 3
  • Hongwang Wang
    • 1
  • Xiaoning Jiang
    • 2
  • Kai Zhuo
    • 1
  • Ying Liu
    • 1
  • Xing Yang
    • 4
  • Zhen Gu
    • 3
  • Shengbo Sang
    • 1
    Email author
  • Yang Shu
    • 5
    Email author
  1. 1.College of Information and ComputerTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Bioengineering, California Nanosystems InstituteUniversity of California, Los AngelesLos AngelesUSA
  4. 4.The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision InstrumentTsinghua UniversityBeijingChina
  5. 5.Department of Chemistry, Colleges of SciencesNortheastern UniversityShenyangChina

Personalised recommendations