Advertisement

Function-regeneration of non-porous hydrolyzed-MOF-derived materials

  • Yo Chan Jeong
  • Jin Weon Seo
  • Jae Ho Kim
  • Seunghoon Nam
  • Min Chang Shin
  • Young Shik Cho
  • Jin Syul Byeon
  • Chong Rae ParkEmail author
  • Seung Jae YangEmail author
Research Article
  • 47 Downloads

Abstract

A facile synthetic strategy based on a water-based process is developed for the preparation of metal-organic framework (MOF)-derived materials by revisiting the hydrolyzed non-porous metal-organic frameworks (h-MOF). The poor water stability of MOF has been recognized as key limitations for its commercialization and large-scale applications because the hydrolysis resulted in the complete loss of their functionalities. However, we found that the negative effect of hydrolysis on MOF can be nullified during the heat treatment. As similar to the intact MOF, h-MOF can be used as a precursor for the preparation of MOF-derived materials from porous MOF-derived carbons (MDCs) to MDC@ZnO composites. The property of h-MOF-derived materials is almost equivalent to that of MOF-derived materials. In addition, h-MOF turned the weakness of water instability to the strength of facile water-based process for hybridization. With the demonstration of the hybrid composite between h-MDC@ZnO and reduced graphene oxide (rGO) as a prototype example, it exhibited superior electrochemical performance when evaluated as an electrode material for lithium-ion batteries.

Keywords

nanomaterials MOF porous materials MOF-derived carbon hydrolyzed MOF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Inha University Research Grant.

Supplementary material

12274_2019_2459_MOESM1_ESM.pdf (6.4 mb)
Function-regeneration of non-porous hydrolyzed-MOF-derived materials

References

  1. [1]
    Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.CrossRefGoogle Scholar
  2. [2]
    Kitagawa, S. Future porous materials. Acc. Chem. Res. 2017, 50, 514–516.CrossRefGoogle Scholar
  3. [3]
    Lee, K. J.; Lee, J. H.; Jeoung, S.; Moon, H. R. Transformation of metal–organic frameworks/coordination polymers into functional nanostructured materials: Experimental approaches based on mechanistic insights. Acc. Chem. Res. 2017, 50, 2684–2692.CrossRefGoogle Scholar
  4. [4]
    Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.CrossRefGoogle Scholar
  5. [5]
    Chen, K.; Sun, Z. H; Fang, R. P; Shi, Y.; Cheng, H. M.; Li, F. Metalorganic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.CrossRefGoogle Scholar
  6. [6]
    Krause, S.; Bon, V.; Senkovska, I.; Többens, D. M.; Wallacher, D.; Pillai, R. S.; Maurin, G.; Kaskel, S. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 2018, 9, 1573.Google Scholar
  7. [7]
    Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.CrossRefGoogle Scholar
  8. [8]
    Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.CrossRefGoogle Scholar
  9. [9]
    Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456–463.CrossRefGoogle Scholar
  10. [10]
    Kim, T. K.; Lee, K. J.; Cheon, J. Y.; Lee, J. H.; Joo, S. H.; Moon, H. R. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal–organic frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946.CrossRefGoogle Scholar
  11. [11]
    Zhou, H. C. J.; Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.CrossRefGoogle Scholar
  12. [12]
    Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.CrossRefGoogle Scholar
  13. [13]
    Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.CrossRefGoogle Scholar
  14. [14]
    Jiao, L.; Wang, Y.; Jiang, H. L. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.CrossRefGoogle Scholar
  15. [15]
    Jiao, L; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.CrossRefGoogle Scholar
  16. [16]
    Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metal–organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.CrossRefGoogle Scholar
  17. [17]
    Yang, S. J.; Cho, J. H.; Lee, K.; Kim, T.; Park, C. R. Concentration-driven evolution of crystal structure, pore characteristics, and hydrogen storage capacity of metal organic framework-5s: Experimental and computational studies. Chem. Mater. 2010, 22, 6138–6145.CrossRefGoogle Scholar
  18. [18]
    Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.CrossRefGoogle Scholar
  19. [19]
    Ni, Z.; Masel, R. I. Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.CrossRefGoogle Scholar
  20. [20]
    Ming, Y.; Kumar, N.; Siegel, D. J. Water adsorption and insertion in MOF-5. ACS Omega 2017, 2, 4921–4928.CrossRefGoogle Scholar
  21. [21]
    Kang, J. H.; Kim, T.; Choi, J.; Park, J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, K. T.; Yang, S. J.; Park, C. R. Hidden second oxidation step of hummers method. Chem. Mater. 2016, 28, 756–764.CrossRefGoogle Scholar
  22. [22]
    Kim, Y. S.; Kang, J. H.; Kim, T.; Jung, Y.; Lee, K.; Oh, J. Y.; Pank, J.; Park, C. R. Easy preparation of readily self-assembled high-performance graphene oxide fibers. Chem. Mater. 2014, 26, 5549–5555.CrossRefGoogle Scholar
  23. [23]
    Oh, J. Y.; Yang, S. J.; Park, J. Y.; Kim, T.; Lee, K.; Kim, Y. S.; Han, H. N.; Park, C. R. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 2015, 15, 190–197.CrossRefGoogle Scholar
  24. [24]
    Oh, J. Y.; Kim, Y. S.; Jung, Y.; Yang, S. J.; Park, C. R. Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 2016, 10, 2184–2192.CrossRefGoogle Scholar
  25. [25]
    Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 2014, 114, 10575–10612.CrossRefGoogle Scholar
  26. [26]
    Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal–organic framework templated porous carbon-metal oxide/ reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2018, 8, 1701416.CrossRefGoogle Scholar
  27. [27]
    Taylor, J. M.; Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H. Enhancing water stability of metal–organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 2012, 134, 14338–14340.CrossRefGoogle Scholar
  28. [28]
    Zhang, W.; Hu, Y. L.; Ge, J.; Jiang, H. L.; Yu, S. H. A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978–16981.CrossRefGoogle Scholar
  29. [29]
    Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.CrossRefGoogle Scholar
  30. [30]
    Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 2006, 128, 10678–10679.CrossRefGoogle Scholar
  31. [31]
    Ming, Y.; Purewal, J.; Yang, J.; Xu, C. C.; Soltis, R.; Warner, J.; Veenstra, M.; Gaab, M.; Müller, U.; Siegel, D. J. Kinetic stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time. Langmuir 2015, 31, 4988–4995.CrossRefGoogle Scholar
  32. [32]
    Rodríguez, N. A.; Parra, R.; Grela, M. A. Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: Implications on their excitation mechanism. RSC Adv. 2015, 5, 73112–73118.CrossRefGoogle Scholar
  33. [33]
    Yang, S. J.; Park, C. R. Preparation of highly moisture-resistant blackcolored metal organic frameworks. Adv. Mater. 2012, 24, 4010–4013.CrossRefGoogle Scholar
  34. [34]
    Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557.CrossRefGoogle Scholar
  35. [35]
    Greer, H. F.; Liu, Y. H.; Greenaway, A.; Wright, P. A.; Zhou, W. Z. Synthesis and formation mechanism of textured MOF-5. Cryst. Growth Des. 2016, 16, 2104–2111.CrossRefGoogle Scholar
  36. [36]
    Huang, L. M.; Wang, H. T.; Chen, J. X.; Wang, Z. B.; Sun, J. Y.; Zhao, D. Y.; Yan, Y. S. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Micropor. Mesopor. Mater. 2003, 58, 105–114.CrossRefGoogle Scholar
  37. [37]
    Hausdorf, S.; Wagler, J.; Moβig, R.; Mertens, F. O. R. L. Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks. J. Phys. Chem. A 2008, 112, 7567–7576.CrossRefGoogle Scholar
  38. [38]
    Thirumurugan, A.; Rao, C. N. R. 1,2-, 1,3- and 1,4-benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure. J. Mater. Chem. 2015, 15, 3852–3858.CrossRefGoogle Scholar
  39. [39]
    Müller, M.; Turner, S.; Lebedev, O. I.; Wang, Y. M.; Van Tendeloo, G.; Fischer, R. A. Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti. x = 1, 2): Preparation and microstructural characterisation. Eur. J. Inorg. Chem. 2011, 2011, 1876–1887.CrossRefGoogle Scholar
  40. [40]
    Chen, R. Z.; Hu, Y.; Shen, Z.; Chen, Y. L.; He, X.; Zhang, X. W.; Zhang, Y. Controlled synthesis of carbon nanofibers anchored with ZnxCo3–xO4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2591–2599.CrossRefGoogle Scholar
  41. [41]
    Han, S.; Lah, M. S. Simple and efficient regeneration of MOF-5 and HKUST-1 via acid–base treatment. Cryst. Growth Des. 2015, 15, 5568–5572.CrossRefGoogle Scholar
  42. [42]
    Tan, K.; Nijem, N.; Canepa, P.; Gong, Q. H.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mater. 2012, 24, 3153–3167.CrossRefGoogle Scholar
  43. [43]
    Du, J. H.; Pei, S. F.; Ma, L. P.; Cheng, H. M. 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 2014, 26, 1958–1991.CrossRefGoogle Scholar
  44. [44]
    Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 2018, 28, 1707411.CrossRefGoogle Scholar
  45. [45]
    Shan, X. Y.; Wang, Y. Z.; Wang, D. W.; Li, F.; Cheng, H. M. Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors. Adv. Energy Mater. 2016, 6, 1502064.CrossRefGoogle Scholar
  46. [46]
    Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.CrossRefGoogle Scholar
  47. [47]
    Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464–470.CrossRefGoogle Scholar
  48. [48]
    Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.CrossRefGoogle Scholar
  49. [49]
    Fletcher, E. A. Solarthermal and solar quasi-electrolytic processing and separations: Zinc from zinc oxide as an example. Ind. Eng. Chem. Res. 1999, 38, 2275–2282.CrossRefGoogle Scholar
  50. [50]
    Wu, M. C.; Lee, C. S. Synthesis and thermal decomposition of Zn(tda)H2O [tda = S(CH2COO)2 2−]. Inorg. Chem. 2006, 45, 9634–9636.CrossRefGoogle Scholar
  51. [51]
    Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.CrossRefGoogle Scholar
  52. [52]
    Yang, S. J.; Nam, S.; Kim, T.; Im, J. H.; Jung, H.; Kang, J. H.; Wi, S.; Park, B.; Park, C. R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 2013, 135, 7394–7397.CrossRefGoogle Scholar
  53. [53]
    Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.CrossRefGoogle Scholar
  54. [54]
    Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/ graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.CrossRefGoogle Scholar
  55. [55]
    Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723–3728.CrossRefGoogle Scholar
  56. [56]
    Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.CrossRefGoogle Scholar
  57. [57]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  58. [58]
    Li, H.; Balaya, P.; Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 2004, 151, A1878-A1885.Google Scholar
  59. [59]
    Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  60. [60]
    Sakaushi, K.; Lyalin, A.; Tominaka, S.; Taketsugu, T.; Uosaki, K. Two-dimensional corrugated porous carbon-, nitrogen-framework/metal heterojunction for efficient multielectron transfer processes with controlled kinetics. ACS Nano 2017, 11, 1770–1779.CrossRefGoogle Scholar
  61. [61]
    Wong, E. M.; Bonevich, J. E.; Searson, P. C. Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J. Phys. Chem. B 1998, 102, 7770–7775.CrossRefGoogle Scholar
  62. [62]
    Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.CrossRefGoogle Scholar
  63. [63]
    Feng, Y.; Zhang, Y. L.; Song, X. Y.; Wei, Y. Z.; Battaglia, V. S. Facile hydrothermal fabrication of ZnO–graphene hybrid anode materials with excellent lithium storage properties. Sustainable Energy Fuels 2017, 1, 767–779.CrossRefGoogle Scholar
  64. [64]
    Yu, S. H.; Lee, D. J.; Park, M.; Kwon, S. G.; Lee, H. S.; Jin, A. H.; Lee, K. S.; Lee, J. E.; Oh, M. H.; Kang, K. et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 2015, 137, 11954–11961.CrossRefGoogle Scholar
  65. [65]
    Sun, X.; Zhou, C. G.; Xie, M.; Sun, H. T.; Hu, T.; Lu, F. Y.; Scott, S. M.; George, S. M.; Lian, J. Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. J. Mater. Chem. A 2014, 2, 7319–7326.CrossRefGoogle Scholar
  66. [66]
    Kushima, A.; Liu, X. H.; Zhu, G.; Wang, Z. L.; Huang, J. Y.; Li, J. Leapfrog cracking and nanoamorphization of ZnO nanowires durin. in situ electrochemical lithiation. Nano Lett. 2011, 11, 4535–4541.CrossRefGoogle Scholar
  67. [67]
    Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Layered double hydroxide Nano‐ and microstructures grown directly on metal substrates and their calcined products for application as Li‐ion battery electrodes. Adv. Funct. Mater. 2008, 18, 1448–1458.CrossRefGoogle Scholar
  68. [68]
    Belliard, F.; Irvine, J. T. S. Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery. J. Power Sources 2001, 97–98, 219–222.CrossRefGoogle Scholar
  69. [69]
    Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A65–A69.CrossRefGoogle Scholar
  70. [70]
    Ahmad, M.; Shi, Y. Y.; Nisar, A.; Sun, H. Y.; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729.CrossRefGoogle Scholar
  71. [71]
    Nadimpalli, S. P. V.; Sethuraman, V. A.; Dalavi, S.; Lucht, B.; Chon, M. J.; Shenoy, V. B.; Guduru, P. R. Quantifying capacity loss due to solidelectrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. J. Power Sources 2012, 215, 145–151.CrossRefGoogle Scholar
  72. [72]
    An, S. J.; Li, J. L.; Du, Z. J.; Daniel, C.; Wood III, D. L. Fast formation cycling for lithium ion batteries. J. Power Sources 2017, 342, 846–852.CrossRefGoogle Scholar
  73. [73]
    Xia, F.; Kwon, S.; Lee, W. W.; Liu, Z. M.; Kim, S.; Song, T.; Choi, K. J.; Paik, U.; Park, W. I. Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett. 2015, 15, 6658–6664.CrossRefGoogle Scholar
  74. [74]
    Su, Q. M.; Dong, Z. M.; Zhang, J.; Du, G. H.; Xu, B. S. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium b. in situ TEM: Two reaction modes are revealed. Nanotechnology 2013, 24, 255705CrossRefGoogle Scholar
  75. [75]
    Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621–625.CrossRefGoogle Scholar
  76. [76]
    Chen, C. C.; Maier, J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes. Nat. Energy 2018, 3, 102–108.CrossRefGoogle Scholar
  77. [77]
    Bekaert, E.; Balaya, P.; Murugavel, S.; Maier, J.; Ménétrier, M. 6Li MAS NMR investigation of electrochemical lithiation of RuO2: Evidence for an interfacial storage mechanism. Chem. Mater. 2009, 21, 856–861.CrossRefGoogle Scholar
  78. [78]
    Kim, J. H.; Byeon, M.; Jeong, Y. C.; Oh, J. Y.; Jung, Y.; Fechler, N.; Yang, S. J.; Park, C. R. Morphochemical imprinting of melamine cyanurate mesocrystals in glucose-derived carbon for high performance lithium ion batteries. J. Mater. Chem. A 2017, 5, 20635–20642.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yo Chan Jeong
    • 1
  • Jin Weon Seo
    • 2
  • Jae Ho Kim
    • 1
  • Seunghoon Nam
    • 3
  • Min Chang Shin
    • 2
  • Young Shik Cho
    • 1
  • Jin Syul Byeon
    • 2
  • Chong Rae Park
    • 1
    Email author
  • Seung Jae Yang
    • 2
    Email author
  1. 1.Carbon Nanomaterials Design Laboratory, Research Institute of Advanced Materials and Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Advanced Nanohybrids Lab., Department of Chemical EngineeringInha UniversityIncheonRepublic of Korea
  3. 3.School of Advanced Materials Engineering, College of EngineeringAndong National University, AndongGyeongsangbuk-doRepublic of Korea

Personalised recommendations