Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts

  • Xueqian Li
  • Henry O. EverittEmail author
  • Jie LiuEmail author
Research Article


In some cases, illumination of traditional thermal catalysts and tailored plasmonic photocatalysts may synergistically combine thermal and nonthermal mechanisms to enhance reaction rates and improve product selectivity at reduced temperatures. To understand how these attributes are achieved in plasmon-driven catalysis, these intertwined thermal and nonthermal effects must be untangled. Here, we show how a novel indirect illumination technique, in conjunction with precisely monitored thermal profiles of the catalyst, can confirm and clarify the role of nonthermal effects in plasmon-enhanced carbon dioxide methanation on a Rh/TiO2 photocatalyst. We find that the extracted nonthermal methane production rate has a linear dependence on the top surface temperature, distinctly different from an exponential dependence for thermal catalysis. We also find that the apparent quantum efficiency from the nonthermal contribution has no dependence on light intensity but maintains a linear dependence on top surface temperatures between 200 and 350 °C. The clear exposition of nonthermal effects in the Rh/TiO2 plasmonic photocatalyst illustrates how this methodology may be applied for the quantitative evaluation of thermal and nonthermal light effects in other plasmon-enhanced catalytic reactions.


carbon dioxide reduction plasmonic photocatalysis hot carriers photothermal heating rhodium nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is supported by the National Science Foundation (CHE-1565657) and the Army Research Office (Award W911NF-15-1-0320). X. L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Supplementary material

12274_2019_2457_MOESM1_ESM.pdf (2.7 mb)
Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts


  1. [1]
    Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.CrossRefGoogle Scholar
  2. [2]
    Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett. 2017, 17, 3710–3717.CrossRefGoogle Scholar
  3. [3]
    Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.CrossRefGoogle Scholar
  4. [4]
    Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2017, 118, 2927–2954.CrossRefGoogle Scholar
  5. [5]
    Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 2006, 106, 4301–4320.CrossRefGoogle Scholar
  6. [6]
    Kale, M. J.; Avanesian, T.; Xin, H. L.; Yan, J.; Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett. 2014, 14, 5405–5412.CrossRefGoogle Scholar
  7. [7]
    Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69–72.CrossRefGoogle Scholar
  8. [8]
    Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.CrossRefGoogle Scholar
  9. [9]
    Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.CrossRefGoogle Scholar
  10. [10]
    Kamarudheen, R.; Castellanos, G. W.; Kamp, L. P. J.; Clercx, H. J. H.; Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano 2018, 8, 8447–8455.CrossRefGoogle Scholar
  11. [11]
    Yang, H.; He, L. Q.; Hu, Y. W.; Lu, X. H.; Li, G. R.; Liu, B. J.; Ren, B.; Tong, Y. X.; Fang, P. P. Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@Pt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11462–11466.CrossRefGoogle Scholar
  12. [12]
    Li, X. Q.; Zhang, X.; Everitt, H. O.; Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 2019, 19, 1706–1711.CrossRefGoogle Scholar
  13. [13]
    Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714–1723.CrossRefGoogle Scholar
  14. [14]
    Zhang, W. B.; Wang, L. B.; Wang, K. W.; Khan, M. U.; Wang, M. L.; Li, H. L.; Zeng, J. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 2017, 13, 1602583.CrossRefGoogle Scholar
  15. [15]
    Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044–1050.CrossRefGoogle Scholar
  16. [16]
    Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749–3753.CrossRefGoogle Scholar
  17. [17]
    Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.CrossRefGoogle Scholar
  18. [18]
    Lim, D. K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 2013, 13, 4075–4079.CrossRefGoogle Scholar
  19. [19]
    Li, H. G.; Rivallan, M.; Thibault-Starzyk, F.; Travert, A.; Meunier, F. C. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Phys. Chem. Chem. Phys. 2013, 15, 7321–7327.CrossRefGoogle Scholar
  20. [20]
    Sivan, Y.; Chu, S. W. Nonlinear plasmonics at high temperatures. Nanophotonics 2017, 6, 317–328.CrossRefGoogle Scholar
  21. [21]
    Sivan, Y.; Un, I. W.; Dubi, Y. Assistance of metal nanoparticles in photocatalysis-nothing more than a classical heat source. Faraday Discuss. 2019, 214, 215–233.CrossRefGoogle Scholar
  22. [22]
    Chen, H. J.; Shao, L.; Ming, T.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272–2280.CrossRefGoogle Scholar
  23. [23]
    Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30–38.CrossRefGoogle Scholar
  24. [24]
    Hartland, G. V.; Besteiro, L. V.; Johns, P.; Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2017, 2, 1641–1653.CrossRefGoogle Scholar
  25. [25]
    Zhang, X.; Li, P.; Barreda, Á.; Gutiérrez, Y.; González, F.; Moreno, F.; Everitt, H. O.; Liu, J. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz. 2016, 1, 75–80.CrossRefGoogle Scholar
  26. [26]
    Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; González, F.; Brown, A. S.; Losurdo, M.; Everitt, H. O.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606–19615.CrossRefGoogle Scholar
  27. [27]
    Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J. Photochem. Photobiol. A 1999, 126, 117–123.CrossRefGoogle Scholar
  28. [28]
    Rasko, J.; Solymosi, F. Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. J. Phys. Chem. 1994, 98, 7147–7152.CrossRefGoogle Scholar
  29. [29]
    Solymosi, F.; Erdöhelyi, A.; Bánsági, T. Methanation of CO2 on supported rhodium catalyst. J. Catal. 1981, 68, 371–382.CrossRefGoogle Scholar
  30. [30]
    Solymosi, F.; Tombácz, I. Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2. Catal. Lett. 1994, 27, 61–65.CrossRefGoogle Scholar
  31. [31]
    Shastri, A. G.; Datye, A. K.; Schwank, J. Gold-titania interactions: Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion. J. Catal. 1984, 87, 265–275.CrossRefGoogle Scholar
  32. [32]
    Novák, É.; Fodor, K.; Szailer, T.; Oszkć, A.; Erdöhelyi, A. CO2 hydrogenation on Rh/TiO2 previously reduced at different temperatures. Top. Catal. 2002, 20, 107–117.CrossRefGoogle Scholar
  33. [33]
    Avanesian, T.; Gusmão, G. S.; Christopher, P. Mechanism of CO2 reduction by H2 on Ru(0 0 0 1) and general selectivity descriptors for late-transition metal catalysts. J. Catal. 2016, 343, 86–96.CrossRefGoogle Scholar
  34. [34]
    Karelovic, A.; Ruiz, P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal. 2013, 301, 141–153.CrossRefGoogle Scholar
  35. [35]
    Jacquemin, M.; Beuls, A.; Ruiz, P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catal. Today 2010, 157, 462–466.CrossRefGoogle Scholar
  36. [36]
    Williams, K. J.; Boffa, A. B.; Salmeron, M.; Bell, A. T.; Somorjai, G. A. The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers. Catal. Lett. 1991, 9, 415–426.CrossRefGoogle Scholar
  37. [37]
    Henderson, M. A.; Worley, S. D. An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. J. Phys. Chem. 1985, 89, 1417–1423.CrossRefGoogle Scholar
  38. [38]
    Sexton, B. A.; Somorjai, G. A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions. J. Catal. 1977, 46, 167–189.CrossRefGoogle Scholar
  39. [39]
    Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.CrossRefGoogle Scholar
  40. [40]
    Schaaf, T.; Grünig, J.; Schuster, M. R.; Rothenfluh, T.; Orth, A. Methanation of CO2-storage of renewable energy in a gas distribution system. Energy Sustain. Soc. 2014, 4, 2.CrossRefGoogle Scholar
  41. [41]
    Halabi, M. H.; de Croon, M. H. J. M.; van der Schaaf, J.; Cobden, P. D.; Schouten, J. C. Low temperature catalytic methane steam reforming over ceria-zirconia supported rhodium. Appl. Catal. A Gen. 2010, 389, 68–79.CrossRefGoogle Scholar
  42. [42]
    Mark, M. F.; Maier, W. F. CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal. 1996, 164, 122–130.CrossRefGoogle Scholar
  43. [43]
    Nakamura, J.; Aikawa, K.; Sato, K.; Uchijima, T. Role of support in reforming of CH4 with CO2 over Rh catalysts. Catal. Lett. 1994, 25, 265–270.CrossRefGoogle Scholar
  44. [44]
    Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.CrossRefGoogle Scholar
  45. [45]
    Baffou, G.; Quidant, R.; García de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 2010, 4, 709–716.CrossRefGoogle Scholar
  46. [46]
    Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.CrossRefGoogle Scholar
  47. [47]
    Olsen, T.; Schiøtz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett. 2009, 103, 238301.CrossRefGoogle Scholar
  48. [48]
    Tesema, T. E.; Kafle, B.; Habteyes, T. G. Plasmon-driven reaction mechanisms: Hot electron transfer versus plasmon-pumped adsorbate excitation. J. Phys. Chem. C 2019, 123, 8469–8483.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryDuke UniversityDurhamUSA
  2. 2.Army Combat Capabilities Development CommandAviation & Missile CenterRedstone ArsenalUSA
  3. 3.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations