Advertisement

Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications

  • Zhaoyang Qi
  • Xianwei Fu
  • Tiefeng Yang
  • Dong Li
  • Peng Fan
  • Honglai Li
  • Feng Jiang
  • Lihui Li
  • Ziyu Luo
  • Xiujuan Zhuang
  • Anlian PanEmail author
Research Article
  • 44 Downloads

Abstract

Lead halide perovskites have received tremendous attentions recently for their excellent properties such as high light absorption coefficient and long charge carrier diffusion length. However, the stability issues and the existence of toxic lead cations have largely limited their applications in optoelectronic area. Herein, we report the synthesis and investigation of highly stable and lead-free Cs3Bi2l9 perovskite nanoplates for visible light photodetection applications. The Cs3Bi2l9 nanoplates were synthesized through a facile solution-processed method, which is also applicable to various substrates. The achieved nanoplates present very good crystal quality and exhibit excellent long-term stability even exposed in moist air for several months. Photodetectors were constructed based on these high-quality perovskite nanoplates for the first time, and display a maximum photoresponsivity of 33.1 mA/W under the illumination of 450 nm laser, which is six times higher than the solution-synthesized CH3NH3Pbl3 nanowire photodetectors. The specific detectivity of these devices can reach up to 1010 Jones. Additionally, the devices exhibit fast rise and decay time of 10.2 and 37.2 ms, respectively, and highly stable photoswitching behavior with their photoresponse well retaining under alternating light and darkness. This work opens up a new opportunity for stable and low-toxic perovskite-based optoelectronic applications.

Keywords

bismuth inorganic perovskite lead-free highly stable nanoplates photodetector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 51525202, 51772084, 61574054, 61635001, and 51802089), Innovation platform and talent plan of Hunan Province (No. 2017RS3027), the Program for Youth Leading Talent and Science and Technology Innovation of Ministry of Science and Technology of China, and the Foundation for Innovative Research Groups of NSFC (No. 21521063).

Supplementary material

12274_2019_2454_MOESM1_ESM.pdf (856 kb)
Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications

References

  1. [1]
    Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.CrossRefGoogle Scholar
  2. [2]
    Guo, Z.; Wan, Y.; Yang, M. J.; Snaider, J.; Zhu, K.; Huang, L. B. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59–62.CrossRefGoogle Scholar
  3. [3]
    Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.CrossRefGoogle Scholar
  4. [4]
    Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nana Res. 2017, 10, 1107–1114.CrossRefGoogle Scholar
  5. [5]
    Lan, C. Y.; Zhou, Z. Y.; Wei, R. J.; Ho, J. C. Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy 2019, 11, 61–82.CrossRefGoogle Scholar
  6. [6]
    Mao, W. X.; Zheng, J. L.; Zhang, Y. P.; Chesman, A. S. R.; Ou, Q. D.; Hicks, J.; Li, E.; Wang, Z. Y.; Graystone, B.; Bell, T. D. M. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem., Int. Ed. 2017, 56, 12486–12491.CrossRefGoogle Scholar
  7. [7]
    Li, Y. T.; Han, L.; Liu, Q.; Wang, W.; Chen, Y. G.; Lyu, M.; Li, X. M.; Sun, H.; Wang, H.; Wang, S. F. et al. Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies. Nana Res. 2018, 77, 3306–3312.CrossRefGoogle Scholar
  8. [8]
    Zhao, X. G.; Yang, D. W.; Ren, J. C.; Sun, Y. H.; Xiao, Z. W.; Zhang, L. J. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662–1673.CrossRefGoogle Scholar
  9. [9]
    Peng, W. B.; Yu, R. M.; Wang, X. E.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nana Res. 2016, 9, 3695–3704.CrossRefGoogle Scholar
  10. [10]
    Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu, H.; Li, L. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nana Res. 2017, 10, 2244–2256.CrossRefGoogle Scholar
  11. [11]
    Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.CrossRefGoogle Scholar
  12. [12]
    Dong, R. T.; Lan, C. Y.; Xu, X. W.; Liang, X. G.; Hu, X. Y.; Li, D. P.; Zhou, Z. Y.; Shu, L.; Yip, S.; Li, C. et al. Novel series of quasi-2D Ruddlesden-Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces 2018, 10, 19019–19026.CrossRefGoogle Scholar
  13. [13]
    Yang, Z.; Xu, Q.; Wang, X. D.; Lu, J. E; Wang, H.; Li, F. T.; Zhang, L.; Hu, G F.; Pan, C. F. Large and ultrastable all-inorganic CsPbBr3 mono-crystalline films: Low-temperature growth and application for high-performance photodetectors. Adv. Mater. 2018, 30, 1802110.CrossRefGoogle Scholar
  14. [14]
    Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small 2018, 14, 1800682.CrossRefGoogle Scholar
  15. [15]
    Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.CrossRefGoogle Scholar
  16. [16]
    Wang, X. X.; Shoaib, M.; Wang, X.; Zhang, X. H.; He, M.; Luo, Z. Y.; Zheng, W. H.; Li, H. L.; Yang, T. E; Zhu, X. L. et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nana 2018, 12, 6170–6178.CrossRefGoogle Scholar
  17. [17]
    Zhong, Y. G.; Wei, Q.; Liu, Z.; Shang, Q. Y.; Zhao, L. Y.; Shao, R. W.; Zhang, Z. P.; Chen, J.; Du, W. N.; Shen, C. et al. Low threshold fabry-perot mode lasing from lead iodide trapezoidal nanoplatelets. Small 2018, 14, 1801938.CrossRefGoogle Scholar
  18. [18]
    Hu, W.; Huang, W.; Yang, S. Z.; Wang, X.; Jiang, Z. Y.; Zhu, X. L.; Zhou, H.; Liu, H. J.; Zhang, Q. L.; Zhuang, X. J. et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater. 2017, 29, 1703256.CrossRefGoogle Scholar
  19. [19]
    Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.CrossRefGoogle Scholar
  20. [20]
    Zhang, H. J.; Xu, Y. D.; Sun, Q. H.; Dong, J. P.; Lu, Y. E.; Zhang, B. B.; Jie, W. Q. Lead free halide perovskite Cs3Bi2I9 bulk crystals grown by a low temperature solution method. CrystEngComm 2018, 20, 4935–4941.CrossRefGoogle Scholar
  21. [21]
    Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.CrossRefGoogle Scholar
  22. [22]
    Cuhadar, C.; Kim, S. G.; Yang, J. M.; Seo, J. Y.; Lee, D.; Park, N. G. All-inorganic bismuth halide perovskite-like materials A3Bi2I9 and A3B1.8Na0.2I8.6 (A = Rb and Cs) for low-voltage switching resistive memory. ACS Appl. Mater. Interfaces 2018, 10, 29741–29749.CrossRefGoogle Scholar
  23. [23]
    Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632.CrossRefGoogle Scholar
  24. [24]
    Jiang, F. Y.; Yang, D. W.; Jiang, Y. Y.; Liu, T. F; Zhao, X. G.; Ming, Y.; Luo, B. W.; Qin, F.; Fan, J. C.; Han, H. W. et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 1019–1027.CrossRefGoogle Scholar
  25. [25]
    Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.CrossRefGoogle Scholar
  26. [26]
    Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; Von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 2011, 333, 1003–1007.CrossRefGoogle Scholar
  27. [27]
    Leguy, A. M. A.; Hu, Y. H.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407.CrossRefGoogle Scholar
  28. [28]
    Qian, M.; Li, M.; Shi, X. B.; Ma, H.; Wang, Z. K.; Liao, L. S. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. J. Mater. Chem. A 2015, 3, 13533–13539.CrossRefGoogle Scholar
  29. [29]
    Zhang, Z.; Li, X. W.; Xia, X. H.; Wang, Z.; Huang, Z. B.; Lei, B. L.; Gao, Y. High-quality (CH3NH3)3Bi2I9 film-based solar cells: Pushing efficiency up to 1.64%. J. Phys. Chem. Lett. 2017, 8, 4300–4307.CrossRefGoogle Scholar
  30. [30]
    Phuyal, D.; Jain, S. M.; Philippe, B.; Johansson, M. B.; Pazoki, M.; Kullgren, J.; Kvashnina, K. O.; Klintenberg, M.; Johansson, E. M. J.; Butorin, S. M. et al. The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy. J. Mater. Chem. A 2018, 6, 9498–9505.CrossRefGoogle Scholar
  31. [31]
    Pal, J.; Bhunia, A.; Chakraborty, S.; Manna, S.; Das, S.; Dewan, A.; Datta, S.; Nag, A. Synthesis and optical properties of colloidal M3Bi2I9 (M = Cs, Rb) perovskite nanocrystals. J. Phys. Chem. C 2018, 722, 10643–10649.CrossRefGoogle Scholar
  32. [32]
    Ghosh, B.; Wu, B.; Mulmudi, H. K.; Guet, C.; Weber, K.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials. ACS Appl. Mater. Interfaces 2018, 10, 35000–35007.CrossRefGoogle Scholar
  33. [33]
    Rajamanickam, N.; Kumari, S.; Vendra, V. K.; Lavery, B. W.; Spurgeon, J.; Druffel, T.; Sunkara, M. K. Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions. Nanotechnology 2016, 27, 235404.CrossRefGoogle Scholar
  34. [34]
    Khazaee, M.; Sardashti, K.; Sun, J. P.; Zhou, H. H.; Clegg, C.; Hill, I. G.; Jones, J. L.; Lupascu, D. C.; Mitzi, D. B. A versatile thin-film deposition method for multidimensional semiconducting bismuth halides. Chem. Mater. 2018, 30, 3538–3544.CrossRefGoogle Scholar
  35. [35]
    Hong, K. H.; Kim, J.; Debbichi, L.; Kim, H.; Im, S. H. Band gap engineering of Cs3Bi2I9 perovskites with trivalent atoms using a dual metal cation. J. Phys. Chem. C 2017, 727, 969–974.CrossRefGoogle Scholar
  36. [36]
    Gu, J. Y.; Yan, G. B.; Lian, Y. B.; Mu, Q. Q.; Jin, H. D.; Zhang, Z. C.; Deng, Z.; Peng, Y. Bandgap engineering of a lead-free defect perovskite Cs3Bi2I9 through trivalent doping of Ru3. RSC Adv. 2018, 8, 25802–25807.CrossRefGoogle Scholar
  37. [37]
    McCall, K. M.; Stoumpos, C. C.; Kostina, S. S.; Kanatzidis, M. G.; Wessels, B. W. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129–4145.CrossRefGoogle Scholar
  38. [38]
    Zhang, Q. L.; Zhu, X. L.; Li, Y. Y.; Liang, J. W.; Chen, T. R.; Fan, P.; Zhou, H.; Hu, W.; Zhuang, X. J.; Pan, A. L. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev. 2016, 10, 458–464.CrossRefGoogle Scholar
  39. [39]
    Wang, X. X.; Zhou, H.; Yuan, S. P.; Zheng, W. H.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Zhang, Q. L.; Zhu, X. L.; Wang, X. et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nana Res. 2017, 10, 3385–3395.CrossRefGoogle Scholar
  40. [40]
    Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.CrossRefGoogle Scholar
  41. [41]
    Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.CrossRefGoogle Scholar
  42. [42]
    Wang, Y. S.; Zhang, Y. P.; Lu, Y.; Xu, W. D.; Mu, H. R.; Chen, C. Y.; Qiao, H.; Song, J. C.; Li, S. J.; Sun, B. Q. et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain. Adv. Opt. Mater. 2015, 3, 1389–1396.CrossRefGoogle Scholar
  43. [43]
    Xu, J. Y.; Rechav, K.; Popovitz-Biro, R.; Nevo, I.; Feldman, Y.; Joselevich, E. High-gain 200 ns photodetectors from self-aligned CdS-CdSe core-shell nanowalls. Adv. Mater. 2018, 30, 1800413.CrossRefGoogle Scholar
  44. [44]
    Horvath, E.; Spina, M.; Szekrenyes, Z.; Kamaras, K.; Gaal, R.; Gachet, D.; Forro, L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nana Lett. 2014, 14, 6761–6766.CrossRefGoogle Scholar
  45. [45]
    Dong, Y. H.; Gu, Y.; Zou, Y. S.; Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Li, X. M.; Zeng, H. B. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 2016, 72, 5622–5632.CrossRefGoogle Scholar
  46. [46]
    Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.CrossRefGoogle Scholar
  47. [47]
    Ding, J. X.; Du, S. J.; Zuo, Z. Y.; Zhao, Y.; Cui, H. Z.; Zhan, X. Y. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C 2017, 727, 4917–4923.CrossRefGoogle Scholar
  48. [48]
    Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46.CrossRefGoogle Scholar
  49. [49]
    Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022–7028.CrossRefGoogle Scholar
  50. [50]
    Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.CrossRefGoogle Scholar
  51. [51]
    Cao, M.; Tian, J. Y.; Cai, Z.; Peng, L.; Yang, L.; Wei, D. C. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 2016, 709, 233303.CrossRefGoogle Scholar
  52. [52]
    Luo, W. G.; Cao, Y. F.; Hu, P. A.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. R.; Zhang, X. H.; Wang, K. Y. Gate tuning of high-performance inse-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418–1423.CrossRefGoogle Scholar
  53. [53]
    Cao, Y. F.; Cai, K. M.; Hu, P. A.; Zhao, L. X.; Yan, T. F.; Luo, W. G.; Zhang, X. H.; Wu, X. G.; Wang, K. Y.; Zheng, H. Z. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci. Rep. 2015, 5, 8130.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhaoyang Qi
    • 1
  • Xianwei Fu
    • 1
  • Tiefeng Yang
    • 1
  • Dong Li
    • 1
  • Peng Fan
    • 1
  • Honglai Li
    • 1
  • Feng Jiang
    • 1
  • Lihui Li
    • 1
  • Ziyu Luo
    • 1
  • Xiujuan Zhuang
    • 1
  • Anlian Pan
    • 1
    Email author
  1. 1.Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials and Engineering School of Physics and Electronic Science, and State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina

Personalised recommendations