Advertisement

Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector

  • Zhaolong Chen
  • Haina Ci
  • Zhenjun Tan
  • Zhipeng Dou
  • Xu-dong Chen
  • Bingzhi Liu
  • Ruojuan Liu
  • Li Lin
  • Lingzhi Cui
  • Peng Gao
  • Hailin Peng
  • Yanfeng ZhangEmail author
  • Zhongfan LiuEmail author
Research Article
  • 33 Downloads

Abstract

Direct growth of large area uniform graphene on functional insulating materials is essential for engineering versatile applications of graphene. However, the existing synthesis approaches can hardly avoid the generation of non-uniform multilayer graphene along the gas flow direction, affording huge challenges for further scaling up. Herein, by exploiting the molten state of soda-lime glass, we have accomplished the direct growth of large area uniform (up to 30 cm × 6 cm) graphene via a facile chemical vapor deposition route on low cost soda-lime glass. The use of molten glass eliminates the chemically active sites (surface corrugations, scratches, defects), and improves the mobility of carbon precursors, affording uniform nucleation and growth of monolayer graphene. Intriguingly, thus-obtained graphene acts as an ideal coating layer for the surface crystallographic modification of soda-lime glass, making it epitaxy substrates for synthesizing high-quality PbI2 nanoplates and continues films. Accordingly, a prototype photodetector was fabricated to present excellent photoelectrical properties of high responsivity (∼ 600 on/off current ratio) and fast response speed (18 µs). This work hereby paves ways for the batch production and the direct applications of graphene glass as platforms for constructing high performance electronic and optoelectronic devices.

Keywords

graphene chemical vapor deposition dielectric substrate lead iodide photodetector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge Electron Microscopy Laboratory in Peking University for the use of Cs corrected electron microscope. This work was financially supported by the National Basic Research Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 51432002 and 51290272), and the Beijing Municipal Science and Technology Planning Project (No. Z161100002116020).

Supplementary material

12274_2019_2453_MOESM1_ESM.pdf (3.8 mb)
Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector

References

  1. [1]
    Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659.CrossRefGoogle Scholar
  2. [2]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  3. [3]
    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.CrossRefGoogle Scholar
  4. [4]
    Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.CrossRefGoogle Scholar
  5. [5]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  6. [6]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  7. [7]
    Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Graphene glass: direct growth of graphene on traditional glasses. Acta Phys. Chim. Sin. 2016, 32, 14–27.Google Scholar
  8. [8]
    Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rüemmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.CrossRefGoogle Scholar
  9. [9]
    Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B. et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano. Res. 2016, 9, 3048–3055.CrossRefGoogle Scholar
  10. [10]
    Plummer, J. Molten bed. Nat. Mater. 2015, 14, 1186.CrossRefGoogle Scholar
  11. [11]
    Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.CrossRefGoogle Scholar
  12. [12]
    Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832–22836.CrossRefGoogle Scholar
  13. [13]
    Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.CrossRefGoogle Scholar
  14. [14]
    Han, G. H.; Güeneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H. J.; Choi, J. Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.CrossRefGoogle Scholar
  15. [15]
    Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136–11144.CrossRefGoogle Scholar
  16. [16]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  17. [17]
    Shon, J. W.; Ohta, J.; Ueno, K.; Kobayashi, A.; Fujioka, H. Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Sci. Rep. 2014, 4, 5325.CrossRefGoogle Scholar
  18. [18]
    Chung, K.; Lee, C. H.; Yi, G. C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010, 330, 655–657.CrossRefGoogle Scholar
  19. [19]
    Kumaresan, V.; Largeau, L.; Madouri, A.; Glas, F.; Zhang, H. Z.; Oehler, F.; Cavanna, A.; Babichev, A.; Travers, L.; Gogneau, N. et al. Epitaxy of GaN nanowires on graphene. Nano Lett. 2016, 16, 4895–4902.CrossRefGoogle Scholar
  20. [20]
    Geng, D.C.; Wu, B.; Guo, Y.L.; Huang, L.P.; Xue, Y.Z.; Chen, J.Y.; Yu, G.; Jiang, L.; Hu, W.P.; Liu, Y.Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992–7996.CrossRefGoogle Scholar
  21. [21]
    Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.CrossRefGoogle Scholar
  22. [22]
    Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242.CrossRefGoogle Scholar
  23. [23]
    Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.CrossRefGoogle Scholar
  24. [24]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  25. [25]
    Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.CrossRefGoogle Scholar
  26. [26]
    Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050–3054.CrossRefGoogle Scholar
  27. [27]
    Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.CrossRefGoogle Scholar
  28. [28]
    Deng, H.; Yang, X. K.; Dong, D. D.; Li, B.; Yang, D.; Yuan, S. J.; Qiao, K. K.; Cheng, Y. B.; Tang, J.; Song, H. S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 2015, 15, 7963–7969.CrossRefGoogle Scholar
  29. [29]
    Tian, Y. D.; Yan, J. C.; Zhang, Y.; Chen, X.; Guo, Y. N.; Cong, P. P.; Sun, L. L.; Wang, Q. J.; Guo, E. Q.; Wei, X. C. et al. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser. Opt. Express 2015, 23, 11334–11340.CrossRefGoogle Scholar
  30. [30]
    Zheng, W.; Zhang, Z. J.; Lin, R. C.; Xu, K.; He, J.; Huang, F. High-crystalline 2D layered PbI2 with ultrasmooth surface: Liquid-phase synthesis and application of high-speed photon detection. Adv. Electron. Mater. 2016, 2, 1600291.CrossRefGoogle Scholar
  31. [31]
    Roth, S.; Willig, W. R. Lead iodide nuclear particle detectors. Appl. Phys. Lett. 1971, 18, 328–330.CrossRefGoogle Scholar
  32. [32]
    Lei, S. D.; Wen, F. F.; Ge, L. H.; Najmaei, S.; George, A.; Gong, Y. J.; Gao, W. L.; Jin, Z. H.; Li, B.; Lou, J. et al. An atomically layered InSe avalanche photodetector. Nano Lett. 2015, 15, 3048–3055.CrossRefGoogle Scholar
  33. [33]
    Yang, S. X.; Li, Y.; Wang, X. Z.; Huo, N. J.; Xia, J. B.; Li, S. S.; Li, J. B. High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 2014, 6, 2582–2587.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhaolong Chen
    • 1
    • 2
  • Haina Ci
    • 1
    • 2
  • Zhenjun Tan
    • 1
    • 2
  • Zhipeng Dou
    • 3
  • Xu-dong Chen
    • 1
  • Bingzhi Liu
    • 1
    • 2
  • Ruojuan Liu
    • 1
    • 2
  • Li Lin
    • 1
    • 2
  • Lingzhi Cui
    • 1
    • 2
  • Peng Gao
    • 3
    • 4
  • Hailin Peng
    • 1
    • 2
    • 4
  • Yanfeng Zhang
    • 4
    • 5
    Email author
  • Zhongfan Liu
    • 1
    • 2
    • 4
    Email author
  1. 1.Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Beijing National Laboratory for Molecular SciencesBeijingChina
  3. 3.Electron Microscopy Laboratory, School of PhysicsPeking UniversityBeijingChina
  4. 4.Beijing Graphene Insititue (BGI)BeijingChina
  5. 5.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations