Advertisement

Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage

  • Zheng Yi
  • Ning LinEmail author
  • Tieqiang Li
  • Ying Han
  • Yang Li
  • Yitai Qian
Research Article

Abstract

Crystalline Ge is a highly active anode material for Li storage but inactive for Na storage because of high diffusion barrier. By in-situ Raman spectrum, we explore that the Na could reversibly alloy/dealloy with the amorphous Ge, but does not with the crystalline Ge. Herein, the amorphous Ge is fabricated by an acid-etching Zintl phase Mg2Ge route at room temperature, which shows a mesoporous architecture with a Brunauer–Emmett–Teller (BET) surface area of 29.9 m2·g−1 and a Barrett–Joyner–Halenda (BJH) average pore diameter of 7.6 nm. This mesoporous architecture would enhance the Na-ion/electron diffusion rate and buffer the volume expansion. As a result, the as-prepared amorphous Ge shows superior Na-ion storage performance including high reversible capacity over 550 mA·h·g−1 at 0.2 C after 50 cycles, good rate capability with a capacity of 273 mA·h·g−1 maintained at 5.0 C, and long-term cycling stability with capacities of 450 mA·h·g−1 at 0.4 C after 200 cycles. For the K-ion storage, the amorphous Ge is also more active than the crystalline counter and maintains a capacity of 210 mA·h·g−1 after 100 cycles at 0.2 C.

Keywords

amorphous Ge sodium-ion batteries K storage in-situ Raman spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21701163, 21671181, and 21831006), and Anhui Provincial Natural Science Foundation (No. 1808085QB25).

Electronic Supplementary Material: Supplementary material (additional figures and tables) is available in the online version of this article at https://doi.org/10.1007/s12274-019-2442-4.

Supplementary material

12274_2019_2442_MOESM1_ESM.pdf (5.6 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.CrossRefGoogle Scholar
  2. [2]
    Yadegari, H.; Sun, Q.; Sun, X. L. Sodium-oxygen batteries: A comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater. 2016, 28, 7065–7093.CrossRefGoogle Scholar
  3. [3]
    Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.CrossRefGoogle Scholar
  4. [4]
    You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243–7248.CrossRefGoogle Scholar
  5. [5]
    Balogun, M. S.; Luo, Y.; Qiu, W. T.; Liu, P.; Tong, Y. X. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 2016, 98, 162–178.CrossRefGoogle Scholar
  6. [6]
    Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M.; Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 9353–9378.CrossRefGoogle Scholar
  7. [7]
    Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878.CrossRefGoogle Scholar
  8. [8]
    Deng, M. X.; Li, S. J.; Hong, W. W.; Jiang, Y. L.; Xu, W.; Shuai, H. L.; Zou, G. Q.; Hu, Y. C.; Hou, H. S.; Wang, W. L. et al. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater. Chem. Phys. 2019, 223, 46–52.CrossRefGoogle Scholar
  9. [9]
    Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.CrossRefGoogle Scholar
  10. [10]
    Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.CrossRefGoogle Scholar
  11. [11]
    Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atom-level understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283–1288.CrossRefGoogle Scholar
  12. [12]
    Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.CrossRefGoogle Scholar
  13. [13]
    Yue, C.; Yu, Y. J.; Sun, S. B.; He, X.; Chen, B. B.; Lin, W.; Xu, B. B.; Zheng, M. S.; Wu, S. T.; Li, J. et al. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 1386–1392.CrossRefGoogle Scholar
  14. [14]
    Kohandehghan, A.; Cui, K.; Kupsta, M.; Ding, J.; Memarzadeh Lotfabad, E.; Kalisvaart, W. P.; Mitlin, D. Activation with Li enables facile sodium storage in germanium. Nano Lett. 2014, 14, 5873–5882.CrossRefGoogle Scholar
  15. [15]
    Lu, X. T.; Adkins, E. R.; He, Y.; Zhong, L.; Luo, L. L.; Mao, S. X.; Wang, C. M.; Korgel, B. A. Germanium as a sodium Ion battery material: In situ TEM reveals fast sodiation kinetics with high capacity. Chem. Mater. 2016, 28, 1236–1242.CrossRefGoogle Scholar
  16. [16]
    Kornowski, A.; Giersig, M.; Vogel, R.; Chemseddine, A.; Weller, H. Nanometer-sized colloidal germanium particles: Wet-chemical synthesis, laser-induced crystallization and particle growth. Adv. Mater. 1993, 5, 634–636.CrossRefGoogle Scholar
  17. [17]
    Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Phase changes in Ge nanoparticles. Chem. Mater. 2005, 17, 4858–4864.CrossRefGoogle Scholar
  18. [18]
    Lee, H.; Kim, M. G.; Choi, C. H.; Sun, Y. K.; Yoon, C. S.; Cho, J. Surfacestabilized amorphous germanium nanoparticles for lithium-storage material. J. Phys. Chem. B 2005, 109, 20719–20723.CrossRefGoogle Scholar
  19. [19]
    Heath, J. R.; Shiang, J. J.; Alivisatos, A. P. Germanium quantum dots: Optical properties and synthesis. J. Chem. Phys. 1994, 101, 1607–1615.CrossRefGoogle Scholar
  20. [20]
    Sun, X. L.; Si, W. P.; Xi, L. X.; Liu, B.; Liu, X. J.; Yan, C. L.; Schmidt, O. G. In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2015, 2, 737–742.CrossRefGoogle Scholar
  21. [21]
    Armatas, G. S.; Kanatzidis, M. G. Hexagonal mesoporous germanium. Science 2006, 313, 817–820.CrossRefGoogle Scholar
  22. [22]
    Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chem. Mater. 1998, 10, 22–24.CrossRefGoogle Scholar
  23. [23]
    Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H. Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater. 1999, 11, 2493–2500.CrossRefGoogle Scholar
  24. [24]
    Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.CrossRefGoogle Scholar
  25. [25]
    Serino, A. C.; Ko, J. S.; Yeung, M. T.; Schwartz, J. J.; Kang, C. B.; Tolbert, S. H.; Kaner, R. B.; Dunn, B. S.; Weiss, P. S. Lithium-ion insertion properties of solution-exfoliated germanane. ACS Nano 2017, 11, 7995–8001.CrossRefGoogle Scholar
  26. [26]
    Arguilla, M. Q.; Jiang, S. S.; Chitara, B.; Goldberger, J. E. Synthesis and stability of two-dimensional Ge/Sn graphane alloys. Chem. Mater. 2014, 26, 6941–6946.CrossRefGoogle Scholar
  27. [27]
    Ma, X. C.; Wu, F. Y.; Kauzlarich, S. M. Alkyl-terminated crystalline Ge nanoparticles prepared from NaGe: Synthesis, functionalization and optical properties. J. Solid State Chem. 2008, 181, 1628–1633.CrossRefGoogle Scholar
  28. [28]
    Vilcarromero, J.; Marques, F. C. XPS study of the chemical bonding in hydrogenated amorphous germanium–carbon alloys. Appl. Phys. A 2000, 70, 581–585.CrossRefGoogle Scholar
  29. [29]
    Legrain, F.; Malyi, O. I.; Manzhos, S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics 2013, 253, 157–163.CrossRefGoogle Scholar
  30. [30]
    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.CrossRefGoogle Scholar
  31. [31]
    Wu, T. J.; Jing, M. J.; Yang, L.; Zou, G. Q.; Hou, H. S.; Zhang, Y.; Zhang, Y.; Cao, X. Y.; Ji, X. B. Controllable chain-length for covalent sulfur–carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 2019, 9, 1803478.CrossRefGoogle Scholar
  32. [32]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  33. [33]
    Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.CrossRefGoogle Scholar
  34. [34]
    Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434–442.CrossRefGoogle Scholar
  35. [35]
    Sultana, I.; Rahman, M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M. High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5, 23506–23512.CrossRefGoogle Scholar
  36. [36]
    McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 2015, 7, 26158–26166.CrossRefGoogle Scholar
  37. [37]
    Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energydensity potassium-ion batteries. Angew. Chemi. 2018, 130, 4777–4781.CrossRefGoogle Scholar
  38. [38]
    Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.CrossRefGoogle Scholar
  39. [39]
    Sultana, I.; Rahman, M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.CrossRefGoogle Scholar
  40. [40]
    Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.CrossRefGoogle Scholar
  41. [41]
    Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38–46.CrossRefGoogle Scholar
  42. [42]
    Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.CrossRefGoogle Scholar
  43. [43]
    Zhang, Y.; Yang, L.; Tian, Y.; Li, L.; Li, J. Y.; Qiu, T. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 2019, 229, 303–309.Google Scholar
  44. [44]
    Huang, Z.; Chen, Z.; Ding, S. S.; Chen, C. M.; Zhang, M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 2018, 219, 19–22.CrossRefGoogle Scholar
  45. [45]
    Sultana, I.; Ramireddy, T.; Rahman, M.; Chen, Y.; Glushenkov, A. M. Tinbased composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279–9282.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zheng Yi
    • 1
  • Ning Lin
    • 1
    Email author
  • Tieqiang Li
    • 1
  • Ying Han
    • 1
  • Yang Li
    • 1
  • Yitai Qian
    • 1
  1. 1.Department of Applied ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations