Speeding up carbon nanotube integrated circuits through three-dimensional architecture

  • Yunong Xie
  • Zhiyong ZhangEmail author
  • Donglai Zhong
  • Lianmao PengEmail author
Research Article


Semiconducting carbon nanotube (CNT) field effect transistor (FET) is attractive for constructing three-dimensional (3D) integrated circuits (ICs) because of its low-temperature processes and low power dissipation. However, CNT based 3D ICs reported usually suffered from lower performance than that of monolayer CNT ICs. In this work, we develop a 3D IC technology through integrating multi-layer high performance CNT film FETs into one chip, and show that it promotes the operation speed of CNT based 3D ICs considerably. We also explore the advantage on ICs of 3D architecture, which brings 38% improvement on speed over two-dimensional (2D) one. Specially, we demonstrate the fabrication of 3D five-stage ring-oscillator circuits with an oscillation frequency of up to 680 MHz and stage delay of 0.15 ns, which represents the highest speed of 3D CNT-based ICs.


carbon nanotube nanoelectronics field-effect transistors 3D integrated circuits ring oscillator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research & Development Program (No. 2016YFA0201901), the National Natural Science Foundation of China (Nos. 61621061, 61427901 and 61888102) and the Beijing Municipal Science and Technology Commission (No. D171100006617002 1-2).

Supplementary material

12274_2019_2436_MOESM1_ESM.pdf (1.6 mb)
Speeding up carbon nanotube integrated circuits through three-dimensional architecture


  1. [1]
    Dennard, R. H.; Gaensslen, F. H.; Yu, H. N.; Rideout, V. L.; Bassous, E.; Leblanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. Proc. IEEE 1999, 87, 668–678.CrossRefGoogle Scholar
  2. [2]
    Davis, J. A.; Venkatesan, R.; Kaloyeros, A.; Beylansky, M.; Souri, S. J.; Banerjee, K.; Saraswat, K. C.; Rahman, A.; Reif, R.; Meindl, J. D. Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. IEEE 2001, 89, 305–324.CrossRefGoogle Scholar
  3. [3]
    Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Wong, H. S. P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288.CrossRefGoogle Scholar
  4. [4]
    Skotnicki, T.; Fenouillet-Beranger, C.; Gallon, C.; Boeuf, F.; Monfray, S.; Payet, F.; Pouydebasque, A.; Szczap, M.; Farcy, A.; Arnaud, F. et al. Innovative materials, devices, and CMOS technologies for low-power mobile multimedia. IEEE Trans. Electron Devices 2008, 55, 96–130.CrossRefGoogle Scholar
  5. [5]
    Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.CrossRefGoogle Scholar
  6. [6]
    Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Materialstoday 2006, 9, 28–35.Google Scholar
  7. [7]
    McEuen, P. L.; Fuhrer, M. S.; Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.CrossRefGoogle Scholar
  8. [8]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefGoogle Scholar
  9. [9]
    Topol, A. W.; La Tulipe, D. C.; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W. et al. Three-dimensional integrated circuits. IBM J. Res. Dev. 2006, 50, 491–506.CrossRefGoogle Scholar
  10. [10]
    Das, S.; Chandrakasan, A.; Reif, R. Three-dimensional integrated circuits: Performance, design methodology, and CAD tools. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2003, Tampa, FL, USA, 2003, pp 13–18.CrossRefGoogle Scholar
  11. [11]
    England, L.; Arsovski, I. Advanced packaging saves the day!—How TSV technology will enable continued scaling. In Proceedings of 2017 IEEE International Electron Devices Meeting, San Francisco, CA, 2017, pp 3.5.1-3.5.4.Google Scholar
  12. [12]
    Kim, K. M.; Sinha, S.; Cline, B.; Yeric, G.; Lim, S. K. Four-tier monolithic 3D ICs: Tier partitioning methodology and power benefit study. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design. San Francisco Airport, CA, USA, 2016, pp 70–75.CrossRefGoogle Scholar
  13. [13]
    Lin, M. J.; El Gamal, A.; Lu, Y. C.; Wong, S. Performance benefits of monolithically stacked 3-D FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2007, 26, 216–229.CrossRefGoogle Scholar
  14. [14]
    Sabry Aly, M. M.; Gao, M. Y.; Hills, G.; Lee, C. S.; Pitner, G.; Shulaker, M. M.; Wu, T. F.; Asheghi, M.; Bokor, J.; Franchetti, F. et al. Energy-efficient abundant-data computing: The N3XT 1,000x. Computer 2015, 48, 24–33.CrossRefGoogle Scholar
  15. [15]
    Wu, T. T.; Shen, C. H.; Shieh, J. M.; Huang, W. H.; Wang, H. H.; Hsueh, F. K.; Chen, H. C.; Yang, C. C.; Hsieh, T. Y.; Chen, B. Y. et al. Low-cost and TSV-free monolithic 3D-IC with heterogeneous integration of logic, memory and sensor analogy circuitry for Internet of Things. In Proceedings of 2015 IEEE International Electron Devices Meeting, Washington, DC, USA, 2015, pp 25.4.1-25.4.4.Google Scholar
  16. [16]
    Hsueh, F. K.; Shen, C. H.; Shieh, J. M.; Li, K. S.; Chen, H. C.; Huang, W. H.; Wang, H. H.; Yang, C. C.; Hsieh, T. Y.; Lin, C. H. et al. First fully functionalized monolithic 3D+ IoT chip with 0.5 V light-electricity power management, 6.8 GHz wireless-communication VCO, and 4-layer vertical ReRAM. In Proceedings of 2016 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2016, pp 2.3.1-2.3.4.Google Scholar
  17. [17]
    Fenouillet-Beranger, C.; Beaurepaire, S.; Deprat, F.; de Sousa, A. A.; Brunet, L.; Batude, P.; Rozeau, O.; Andrieu, F.; Besombes, P.; Samson, M. P. et al. Guidelines for intermediate back end of line (BEOL) for 3D sequential integration. 2017 47th European Solid-State Device Research Conference, Leuven, Belgium, 2017, pp 252–255.CrossRefGoogle Scholar
  18. [18]
    Vinet, M.; Batude, P.; Tabone, C.; Previtali, B.; LeRoyer, C.; Pouydebasque, A.; Clavelier, L.; Valentian, A.; Thomas, O.; Michaud, S. et al. 3D monolithic integration: Technological challenges and electrical results. Microelectron. Eng. 2011, 88, 331–335.CrossRefGoogle Scholar
  19. [19]
    Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.CrossRefGoogle Scholar
  20. [20]
    Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720–1749.CrossRefGoogle Scholar
  21. [21]
    Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. S. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.CrossRefGoogle Scholar
  22. [22]
    Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.CrossRefGoogle Scholar
  23. [23]
    Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.CrossRefGoogle Scholar
  24. [24]
    Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.CrossRefGoogle Scholar
  25. [25]
    Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.CrossRefGoogle Scholar
  26. [26]
    Wei, H.; Patil, N.; Lin, A.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, MD, USA, 2009, pp 1–4.Google Scholar
  27. [27]
    Wei, H.; Shulaker, M.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. In Proceedings of 2013 IEEE International Electron Devices Meeting, IEEE, 2013, pp 19.7.1-19.7.4.Google Scholar
  28. [28]
    Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.CrossRefGoogle Scholar
  29. [29]
    Zhong, D. L.; Xiao, M. M.; Zhang, Z. Y.; Peng, L. M. Solution-processed carbon nanotubes based transistors with current density of 1.7 mA/μm and peak transconductance of 0.8 mS/μm. 2017 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2017, pp 5.6.1-5.6.4.Google Scholar
  30. [30]
    Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.CrossRefGoogle Scholar
  31. [31]
    Xiao, M. M.; Liang, S. B.; Han, J.; Zhong, D. L.; Liu, J. X.; Zhang, Z. Y.; Peng, L. M. Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens. 2018, 3, 749–756.CrossRefGoogle Scholar
  32. [32]
    Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.CrossRefGoogle Scholar
  33. [33]
    Ding, L.; Liang, S. B.; Pei, T.; Zhang, Z. Y.; Wang, S.; Zhou, W. W.; Liu, J.; Peng, L. M. Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V. Appl. Phys. Lett. 2012, 100, 263116.Google Scholar
  34. [34]
    Banerjee, K.; Souri, S. J.; Kapur, P.; Saraswat, K. C. 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE 2001, 89, 602–633.CrossRefGoogle Scholar
  35. [35]
    Zhao, Y. D.; Li, Q. Q.; Xiao, X. Y.; Li, G. H.; Jin, Y. H.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Three-dimensional flexible complementary metal- oxide-semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 2016, 10, 2193–2202.CrossRefGoogle Scholar
  36. [36]
    Zhang, P. P.; Qiu, C. G.; Zhang, Z. Y.; Ding, L.; Chen, B. Y.; Peng, L. M. Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res. 2016, 9, 1785–1794.CrossRefGoogle Scholar
  37. [37]
    Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; de Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  38. [38]
    Zhao, C. Y.; Zhong, D. L.; Qiu, C. G.; Han, J.; Zhang, Z. Y.; Peng, L. M. Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect. Appl. Phys. Lett. 2018, 112, 053102.Google Scholar
  39. [39]
    Kaufman, F. B.; Thompson, D. B.; Broadie, R. E.; Jaso, M. A.; Guthrie, W. L.; Pearson, D. J.; Small, M. B. Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects. J. Electrochem. Soc. 1991, 138, 3460–3465.CrossRefGoogle Scholar
  40. [40]
    Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.CrossRefGoogle Scholar
  41. [41]
    Nam, S. W.; Jiang, X. C.; Xiong, Q. H.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. USA 2009, 106, 21035–21038.CrossRefGoogle Scholar
  42. [42]
    Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40–45.CrossRefGoogle Scholar
  43. [43]
    Han, S. J.; Tang, J. S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol., 2017, 12, 861–865.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations