Advertisement

Exploring the synthesis conditions to control the morphology of gold-iron oxide heterostructures

  • Pablo Tancredi
  • Luelc Souza da Costa
  • Sebastian Calderon
  • Oscar Moscoso-Londoño
  • Leandro M. Socolovsky
  • Paulo J. Ferreira
  • Diego Muraca
  • Daniela ZanchetEmail author
  • Marcelo KnobelEmail author
Research Article
  • 55 Downloads

Abstract

Gold–iron oxide nano-heterostructures with a clear and well-defined morphology were prepared via a seed-assisted method. The synthesis process and the events of heterogeneous nucleation during the decomposition of the iron precursor were carefully studied in order to understand the mechanism of the reaction and to tailor the architecture of the fabricated heterostructures. When employing Au seeds of 3 and 5 nm, nanoparticles with a dimer-like morphology were produced due to the occurrence of a single iron oxide nucleation event. Otherwise, multi-nucleation events could be favored by two mechanisms: (i) by the incorporation of a reducing agent and the slowing down of the heating protocol, leading to a core–shell system; (ii) by the increase of the Au seed size to 8 nm, leading to a flower-like system. Further increase of the Au seed size to 12 nm using similar synthesis conditions promotes the homogeneous nucleation and growth of the iron oxide phase, without formation of heterostructures. An in-depth study was performed on the gold–iron oxide heterostructures to confirm the epitaxial growth of the oxide domain over the Au seed and to analyze the elemental distribution of the components within the heterostructures. Finally, it was found that the modification of the plasmonic properties of the Au nanoparticles are strongly influenced by the architecture of the heterostructure, with a more pronounced damping effect for the systems produced after multi-nucleation events.

Keywords

nanoparticles gold–iron oxide heterostructures heterogeneous nucleation epitaxial growth HR-microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES) - Finance Code 001, Brazil. O. M.-L., M. K. and D. M. acknowledge the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2014/26672-8; 2011-12356) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (303236/2017-5). L. M. S. and P. T. acknowledge the Argentinian agency Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (fellowship and project PIP 468CO). L. S. C. and D. Z. acknowledge Coordenação de aperfeiçoamento de pessoal de nivel superior (CAPES) (PhD fellowship 1140906), FAPESP (2011/50727-9) and CNPq (309373/2014-0). The authors acknowledge the Brazilian Nanotechnology National Laboratory (LNNano) for the use of electron microscopy facility under the projects ME–22345, 21812, TEM 13321, 18588, 19497, 20570, 20302 and 20220.

Electronic Supplementary Material: Supplementary material (additional synthesis protocols, AuNPs characterization, Au/FeOx X-ray diffractograms and Au/FeOx additional TEM, HRTEM images and linescan EDS) is available in the online version of this article at https://doi.org/10.1007/s12274-019-2431-7.

Supplementary material

12274_2019_2431_MOESM1_ESM.pdf (6.4 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.CrossRefGoogle Scholar
  2. [2]
    Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.CrossRefGoogle Scholar
  3. [3]
    Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.CrossRefGoogle Scholar
  4. [4]
    Ye, X. C.; Reifsnyder Hickey, D.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106–5115.CrossRefGoogle Scholar
  5. [5]
    Schick, I.; Gehrig, D.; Montigny, M.; Balke, B.; Panthöfer, M.; Henkel, A.; Laquai, F.; Tremel, W. Effect of charge transfer in magnetic-plasmonic Au@MOx (M = Mn, Fe) heterodimers on the kinetics of nanocrystal formation. Chem. Mater. 2015, 27, 4877–4884.CrossRefGoogle Scholar
  6. [6]
    Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.CrossRefGoogle Scholar
  7. [7]
    LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.CrossRefGoogle Scholar
  8. [8]
    Sun, Y. G. Interfaced heterogeneous nanodimers. Natl. Sci. Rev. 2015, 2, 329–348.CrossRefGoogle Scholar
  9. [9]
    Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.CrossRefGoogle Scholar
  10. [10]
    Zeng, J.; Wang, X. P.; Hou, J. G. Colloidal hybrid nanocrystals: Synthesis, properties, and perspectives. In Nanocrystal. Masuda, Y., Ed.; InTech: Rijeka, 2011.Google Scholar
  11. [11]
    Choi, S. H.; Na, H. B.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M. H.; Moon, J.; Son, J. S.; Song, I. C. et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573–15580.CrossRefGoogle Scholar
  12. [12]
    Xu, C. J.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. H. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem., Int. Ed. 2008, 47, 173–176.CrossRefGoogle Scholar
  13. [13]
    Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for Co oxidation. Chem. Mater. 2010, 22, 3277–3282.CrossRefGoogle Scholar
  14. [14]
    Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2010, 2, 975–983.CrossRefGoogle Scholar
  15. [15]
    Gan, Z. B.; Zhao, A. W.; Zhang, M. F.; Wang, D. P.; Guo, H. Y.; Tao, W. Y.; Gao, Q.; Mao, R. R.; Liu, E. H. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances. J. Nanopart. Res. 2013, 15, 1954.CrossRefGoogle Scholar
  16. [16]
    Orlando, T.; Capozzi, A.; Umut, E.; Bordonali, L.; Mariani, M.; Galinetto, P.; Pineider, F.; Innocenti, C.; Masala, P.; Tabak, F. et al. Spin dynamics in hybrid iron oxide–gold nanostructures. J. Phys. Chem. C 2015, 119, 1224–1233.CrossRefGoogle Scholar
  17. [17]
    Velasco, V.; Muñoz, L.; Mazarío, E.; Menéndez, N.; Herrasti, P.; Hernando, A.; Crespo, P. Chemically synthesized Au–Fe3O4 nanostructures with controlled optical and magnetic properties. J. Phys. D Appl. Phys. 2015, 48, 035502.CrossRefGoogle Scholar
  18. [18]
    Costa, L. S. D.; Zanchet, D. Pretreatment impact on the morphology and the catalytic performance of hybrid heterodimers nanoparticles applied to CO oxidation. Catal. Today 2017, 282, 151–158.CrossRefGoogle Scholar
  19. [19]
    Tomitaka, A.; Arami, H.; Raymond, A.; Yndart, A.; Kaushik, A.; Jayant, R. D.; Takemura, Y.; Cai, Y.; Toborek, M.; Nair, M. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale 2017, 9, 764–773.CrossRefGoogle Scholar
  20. [20]
    Kakwere, H.; Materia, M. E.; Curcio, A.; Prato, M.; Sathya, A.; Nitti, S.; Pellegrino, T. Dually responsive gold-iron oxide heterodimers: Merging stimuli-responsive surface properties with intrinsic inorganic material features. Nanoscale 2018, 10, 3930–3944.CrossRefGoogle Scholar
  21. [21]
    Nguyen, T. T.; Mammeri, F.; Ammar, S. Iron oxide and gold based magnetoplasmonic nanostructures for medical applications: A review. Nanomaterials (Basel) 2018, 8, 149.CrossRefGoogle Scholar
  22. [22]
    Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.CrossRefGoogle Scholar
  23. [23]
    Umut, E.; Pineider, F.; Arosio, P.; Sangregorio, C.; Corti, M.; Tabak, F.; Lascialfari, A.; Ghigna, P. Magnetic, optical and relaxometric properties of organically coated gold–magnetite (Au–Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J. Magn. Magn. Mater. 2012, 324, 2373–2379.CrossRefGoogle Scholar
  24. [24]
    Sarveena; Muraca, D.; Zélis, P. M.; Javed, Y.; Ahmad, N.; Vargas, J. M.; Moscoso-Londoño, O.; Knobel, M.; Singh, M.; Sharma, S. K. Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell. RSC Adv. 2016, 6, 70394–70404.CrossRefGoogle Scholar
  25. [25]
    Fantechi, E.; Roca, A. G.; Sepúlveda, B.; Torruella, P.; Estradé, S.; Peiró, F.; Coy, E.; Jurga, S.; Bastús, N. G.; Nogués, J. et al. Seeded growth synthesis of Au–Fe3O4 heterostructured nanocrystals: Rational design and mechanistic insights. Chem. Mater. 2017, 29, 4022–4035.CrossRefGoogle Scholar
  26. [26]
    Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.CrossRefGoogle Scholar
  27. [27]
    Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875–881.CrossRefGoogle Scholar
  28. [28]
    Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Gold/iron oxide core/ hollow-shell nanoparticles. Adv. Mater. 2008, 20, 4323–4329.CrossRefGoogle Scholar
  29. [29]
    León Félix, L.; Coaquira, J. A. H.; Martínez, M. A. R.; Goya, G. F.; Mantilla, J.; Sousa, M. H.; de los Valladares, L.; Barnes, C. H. W.; Morais, P. C. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci. Rep. 2017, 7, 41732.CrossRefGoogle Scholar
  30. [30]
    Lloret, P.; Longinotti, G.; Ybarra, G.; Socolovsky, L.; Moina, C. Synthesis, characterization and biofunctionalization of magnetic gold nanostructured particles. Mater. Res. Bull. 2013, 48, 3671–3676.CrossRefGoogle Scholar
  31. [31]
    Sheng, Y.; Xue, J. M. Synthesis and properties of Au-Fe3O4 heterostructured nanoparticles. J. Colloid Interface Sci. 2012, 374, 96–101.CrossRefGoogle Scholar
  32. [32]
    Reguera, J.; Jiménez de Aberasturi, D.; Henriksen-Lacey, M.; Langer, J.; Espinosa, A.; Szczupak, B.; Wilhelm, C.; Liz-Marzan, L. M. Janus plasmonicmagnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 2017, 9, 9467–9480.CrossRefGoogle Scholar
  33. [33]
    Wei, Y. H.; Klajn, R.; Pinchuk, A. O.; Grzybowski, B. A. Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 2008, 4, 1635–1639.CrossRefGoogle Scholar
  34. [34]
    Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272–282.CrossRefGoogle Scholar
  35. [35]
    Chandra, S.; Huls, N. A. F.; Phan, M. H.; Srinath, S.; Garcia, M. A.; Lee, Y.; Wang, C.; Sun, S. H.; Iglesias, Ò.; Srikanth, H. Exchange bias effect in Au-Fe3O4 nanocomposites. Nanotechnology 2014, 25, 055702.CrossRefGoogle Scholar
  36. [36]
    Feygenson, M.; Bauer, J. C.; Gai, Z.; Marques, C.; Aronson, M. C.; Teng, X. W.; Su, D.; Stanic, V.; Urban, V. S.; Beyer, K. A. et al. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold. Phys. Rev. B 2015, 92, 054416.CrossRefGoogle Scholar
  37. [37]
    Pineider, F.; de Julián Fernández, C.; Videtta, V.; Carlino, E.; Al Hourani, A.; Wilhelm, F.; Rogalev, A.; Cozzoli, P. D.; Ghigna, P.; Sangregorio, C. Spin-polarization transfer in colloidal magnetic-plasmonic Au/iron oxide hetero-nanocrystals. ACS Nano 2013, 7, 857–866.CrossRefGoogle Scholar
  38. [38]
    Shen, C. M.; Hui, C.; Yang, T. Z.; Xiao, C. W.; Tian, J. F.; Bao, L. H.; Chen, S. T.; Ding, H.; Gao, H. J. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem. Mater. 2008, 20, 6939–6944.CrossRefGoogle Scholar
  39. [39]
    Ingham, B.; Lim, T. H.; Dotzler, C. J.; Henning, A.; Toney, M. F.; Tilley, R. D. How nanoparticles coalesce: An in situ study of au nanoparticle aggregation and grain growth. Chem. Mater. 2011, 23, 3312–3317.CrossRefGoogle Scholar
  40. [40]
    Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a sizeselection process. J. Am. Chem. Soc. 2001, 123, 12798–12801.CrossRefGoogle Scholar
  41. [41]
    Qiao, L.; Fu, Z.; Li, J.; Ghosen, J.; Zeng, M.; Stebbins, J.; Prasad, P. N.; Swihart, M. T. Standardizing size- and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano 2017, 11, 6370–6381.CrossRefGoogle Scholar
  42. [42]
    Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, N. Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 2005, 17, 3044–3049.CrossRefGoogle Scholar
  43. [43]
    Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application; Springer: London, 2009.CrossRefGoogle Scholar
  44. [44]
    Orbaek, A. W.; Morrow, L.; Maguire-Boyle, S. J.; Barron, A. R. Reagent control over the composition of mixed metal oxide nanoparticles. J. Exp. Nanosci. 2015, 10, 324–349.CrossRefGoogle Scholar
  45. [45]
    Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.CrossRefGoogle Scholar
  46. [46]
    Shemer, G.; Tirosh, E.; Livneh, T.; Markovich, G. Tuning a colloidal synthesis to control Co2+ doping in ferrite nanocrystals. J. Phys. Chem. C 2007, 111, 14334–14338.CrossRefGoogle Scholar
  47. [47]
    Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.CrossRefGoogle Scholar
  48. [48]
    Vreeland, E. C.; Watt, J.; Schober, G. B.; Hance, B. G.; Austin, M. J.; Price, A. D.; Fellows, B. D.; Monson, T. C.; Hudak, N. S.; Maldonado-Camargo, L. et al. Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 2015, 27, 6059–6066.CrossRefGoogle Scholar
  49. [49]
    Peng, S.; Lee, Y.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of Co oxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
  50. [50]
    Moscoso-Londoño, O.; Muraca, D.; Tancredi, P.; Cosio-Castañeda, C.; Pirota, K. R.; Socolovsky, L. M. Physicochemical studies of complex silver–magnetite nanoheterodimers with controlled morphology. J. Phys. Chem. C 2014, 118, 13168–13176.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pablo Tancredi
    • 1
  • Luelc Souza da Costa
    • 2
    • 3
  • Sebastian Calderon
    • 4
  • Oscar Moscoso-Londoño
    • 5
    • 6
  • Leandro M. Socolovsky
    • 7
  • Paulo J. Ferreira
    • 4
    • 8
  • Diego Muraca
    • 5
  • Daniela Zanchet
    • 2
    Email author
  • Marcelo Knobel
    • 5
    Email author
  1. 1.Laboratory of Amorphous Solids, INTECIN, Faculty of EngineeringUniversity of Buenos Aires – CONICETBuenos AiresArgentina
  2. 2.Department of Inorganic Chemistry, Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil
  3. 3.Brazilian Nanotechnology National Laboratory (LNNano)CampinasBrazil
  4. 4.International Iberian Nanotechnology Laboratory (INL)BragaPortugal
  5. 5.“Gleb Wataghin” Institute of PhysicsUniversity of Campinas (UNICAMP)CampinasBrazil
  6. 6.Autonomous University of ManizalesAntigua Estación del FerrocarrilManizalesColombia
  7. 7.Facultad Regional Santa CruzUniversidad Tecnológica Nacional - CIT Santa Cruz (CONICET) -Río Gallegos, Santa CruzArgentina
  8. 8.Materials Science and Engineering ProgramThe University of Texas at AustinAustinUSA

Personalised recommendations