Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission

  • Lvming Dong
  • Zhuo Chen
  • Lei YeEmail author
  • Yan Yu
  • Jianbing Zhang
  • Huan Liu
  • Jianfeng ZangEmail author
Research Article


Mn-doped all-inorganic perovskite quantum dots (QDs) provide prominent applications in the fields of low-cost light source or display, because of their remarkable properties including dual-color emission and reduced lead content, as well as high photoluminescence quantum yields (PLQYs) and high stability. However, the existing synthesis approaches usually require hash conditions, such as high temperature and nitrogen protection, which is a major hurdler for the practical manufacturing. In addition, the significantly high Mn substitution ratio in CsPbX3 QDs is still challenging. The real dual-color emission with two strong emission peaks in the Mn-doped all-inorganic perovskite QDs has attracted great interest. Here we present a gram-scale approach to synthesize both CsPbxMn1−xCl3 and CsPb1−xMnxClyBr3−y QDs at 100 °C in the air with high Mn substitution ratio, up to 55.64% atomically. The as-prepared CsPb1−xMnxClyBr3−y QDs exhibit high PLQYs of 62.41% and dual-color emission with two strong emission peaks around at 400–450 nm and 600 nm, respectively. The enhanced peak at 400–450 nm is a result of the hybrid halides in CsPbBrxCl3−x host. Furthermore, the unique advantage of the optical emission and high PLQYs properties of the CsPbxMn1xCl3 QDs has been demonstrated as invisible ink for encryption applications and polymer composites. Our gram-scale synthesis approach for Mn-doped all-inorganic perovskite QDs may boost the future research and practical applications of QDs-based white LED, spintronics, and molecular barcoding.


gram-scale enhanced dual-color emission all-inorganic perovskite quantum dots invisible ink polymer composites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (No. 2018YFB1105100) and the National Natural Science Foundation of China (Nos. 51572096 and 61704061). We thank Flexible Electronics Research Center of HUST for carrying out the field emission scanning electron microscope measurements, and the Analytical and Testing Center in HUST for TEM, XRD, UV-vis, PL tests.

Supplementary material

12274_2019_2430_MOESM1_ESM.mp4 (5.5 mb)
Supplementary material, approximately 5.52 MB.
12274_2019_2430_MOESM2_ESM.pdf (3 mb)
Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission


  1. [1]
    Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.CrossRefGoogle Scholar
  2. [2]
    Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.CrossRefGoogle Scholar
  3. [3]
    Li, X. M.; Yu, D. J.; Cao, F.; Gu, Y.; Wei, Y.; Wu, Y.; Song, J. Z.; Zeng, H. B. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 2016, 26, 5903–5912.CrossRefGoogle Scholar
  4. [4]
    Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.CrossRefGoogle Scholar
  5. [5]
    Nozik, A. J. Nanophotonics: Making the most of photons. Nat. Nanotechnol. 2009, 4, 548–549.CrossRefGoogle Scholar
  6. [6]
    Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.CrossRefGoogle Scholar
  7. [7]
    Yoon, H. C.; Kang, H.; Lee, S.; Oh, J. H.; Yang, H.; Do, Y. R. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 2016, 8, 18189–18200.CrossRefGoogle Scholar
  8. [8]
    Zhang, X. J.; Wang, H. C.; Tang, A. C.; Lin, S. Y.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Robust and stable narrow-band green emitter: An option for advanced wide-color-gamut backlight display. Chem. Mater. 2016, 28, 8493–8497.CrossRefGoogle Scholar
  9. [9]
    Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016, 16, 1415–1420.CrossRefGoogle Scholar
  10. [10]
    de Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.CrossRefGoogle Scholar
  11. [11]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.CrossRefGoogle Scholar
  12. [12]
    Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.CrossRefGoogle Scholar
  13. [13]
    Aldakov, D; Lefrançois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756–3776.CrossRefGoogle Scholar
  14. [14]
    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.CrossRefGoogle Scholar
  15. [15]
    Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.CrossRefGoogle Scholar
  16. [16]
    Yao, E. P.; Yang, Z. L.; Meng, L.; Sun, P. Y.; Dong, S. Q.; Yang, Y.; Yang, Y. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv. Mater. 2017, 29, 1606859.Google Scholar
  17. [17]
    Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.CrossRefGoogle Scholar
  18. [18]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  19. [19]
    Hai, J.; Li, H.; Zhao, Y.; Chen, F. J.; Peng, Y.; Wang, B. D. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Commun. 2017, 53, 5400–5403.CrossRefGoogle Scholar
  20. [20]
    van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.CrossRefGoogle Scholar
  21. [21]
    Hu, Q. S.; Li, Z.; Tan, Z. F.; Song, H. B.; Ge, C.; Niu, G. D.; Han, J. T.; Tang, J. Rare earth ion-doped CsPbBr3 nanocrystals. Adv. Opt. Mater. 2018, 6, 1700864.CrossRefGoogle Scholar
  22. [22]
    Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.CrossRefGoogle Scholar
  23. [23]
    Leng, M. Y.; Chen, Z. W.; Yang, Y.; Li, Z.; Zeng, K.; Li, K. H.; Niu, G. D.; He, Y. S.; Zhou, Q. C.; Tang, J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem., Int. Ed. 2016, 55, 15012–15016.CrossRefGoogle Scholar
  24. [24]
    Liu, H. W.; Wu, Z. N.; Shao, J. R.; Yao, D.; Gao, H.; Liu, Y.; Yu, W. L.; Zhang, H.; Yang, B. CsPbxMn1−xCl3 perovskite quantum dots with high Mn substitution ratio}. ACS Nano 2017, 11, 2239–2247.CrossRefGoogle Scholar
  25. [25]
    Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual- color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.CrossRefGoogle Scholar
  26. [26]
    Parobek, D.; Roman, B. J.; Dong, Y. T.; Jin, H.; Lee, E.; Sheldon, M.; Son, D. H. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 2016, 16, 7376–7380.CrossRefGoogle Scholar
  27. [27]
    Mir, W. J.; Jagadeeswararao, M.; Das, S.; Nag, A. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Lett. 2017, 2, 537–543.CrossRefGoogle Scholar
  28. [28]
    Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.CrossRefGoogle Scholar
  29. [29]
    Nag, A.; Chakraborty, S.; Sarma, D. D. To dope Mn2+ in a semiconducting nanocrystal. J. Am. Chem. Soc. 2008, 130, 10605–10611.CrossRefGoogle Scholar
  30. [30]
    Zhu, J. R.; Yang, X. L.; Zhu, Y. H.; Wang, Y. W.; Cai, J.; Shen, J. H.; Sun, L. Y.; Li, C. Z. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio. J. Phys. Chem. Lett. 2017, 8, 4167–4171.CrossRefGoogle Scholar
  31. [31]
    Xu, K. Y.; Lin, C. C.; Xie, X. B.; Meijerink. A. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals. Chem. Mater. 2017, 29, 4265–4272.CrossRefGoogle Scholar
  32. [32]
    Battaglia, D.; Blackman, B.; Peng, X. G. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc. 2005, 127, 10889–10897.CrossRefGoogle Scholar
  33. [33]
    Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Adv. Mater. 2007, 19, 569–572.CrossRefGoogle Scholar
  34. [34]
    Wang, P. C.; Dong, B. H.; Cui, Z. J.; Gao, R. J.; Su, G.; Wang, W.; Cao, L. X. Synthesis and characterization of Mn-doped CsPb(Cl/Br)3 perovskite nanocrystals with controllable dual-color emission. RSC Adv. 2018, 8, 1940–1947.CrossRefGoogle Scholar
  35. [35]
    Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.CrossRefGoogle Scholar
  36. [36]
    Huang, G. G.; Wang, C. L.; Xu, S. H.; Zong, S. F.; Lu, J.; Wang, Z. Y.; Lu, C. G.; Cui, Y. P. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 2017, 29, 1700095.CrossRefGoogle Scholar
  37. [37]
    Bai, D. L.; Zhang, J. R.; Jin, Z. W.; Bian, H.; Wang, K.; Wang, H. R.; Liang, L.; Wang, Q.; Liu, S. F. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 2018, 3, 970–978.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Optical and Electronic Information and Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Innovation InstituteHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations