Advertisement

High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode

  • Guoyin Zhu
  • Lianbo Ma
  • Huinan Lin
  • Peiyang Zhao
  • Lei Wang
  • Yi Hu
  • Renpeng Chen
  • Tao Chen
  • Yanrong Wang
  • Zuoxiu TieEmail author
  • Zhong JinEmail author
Research Article
  • 28 Downloads

Abstract

Lithium-ion capacitor (LIC) has been regarded as a promising energy storage system with high powder density and high energy density. However, the kinetic mismatch between the anode and the cathode is a major issue to be solved. Here we report a high-performance asymmetric LIC based on oxygen-deficient black-TiO2-x/graphene (B-TiO2-x/G) aerogel anode and biomass derived microporous carbon cathode. Through a facile one-pot hydrothermal process, graphene nanosheets and oxygen-vacancy-rich porous B-TiO2-x nanosheets were self-assembled into three-dimensional (3D) interconnected B-TiO2-x/G aerogel. Owing to the rich active sites, high conductivity and fast kinetics, the B-TiO2-x/G aerogel exhibits remarkable reversible capacity, high rate capability and long cycle life when used as anode material for lithium ion storage. Moreover, density functional theory (DFT) calculation reveals that the incorporation of graphene nanosheets can reduce the energy barrier of Li+ diffusion in B-TiO2-x. The asymmetric LIC based on B-TiO2-x/G aerogel anode and naturally-abundant pine-needles derived microporous carbon (MPC) cathode work well within a large voltage window (1.0-4.0 V), and can deliver high energy density (166.4 Wh kg-1 at 200 mA g-1), and high power density (7.9 kW kg-1 at 17.1 Wh kg-1). Moreover, the LIC shows a high capacitance retention of 87% after 3,000 cycles at 2,000 mA g-1. The outstanding electrochemical performances indicate that the rationally-designed LICs have promising prospect to serve as advanced fast-charging energy storage devices.

Keywords

lithium-ion capacitors oxygen-deficient B-TiO2-x/graphene aerogel anode biomass-derived microporous carbon high energy density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, and 2015CB659300), the National Natural Science Foundation of China (Nos. 21872069, 51761135104, and 21573108), Natural Science Foundation of Jiangsu Province (Nos. BK20180008 and BK20150583), High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province, and the Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2019_2427_MOESM1_ESM.pdf (1.4 mb)
High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode

References

  1. [1]
    Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 2001, 148, A930–A939.CrossRefGoogle Scholar
  2. [2]
    Ma, Y. F.; Chang, H. C.; Zhang, M.; Chen, Y. S. Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 2015, 27, 5296–5308.CrossRefGoogle Scholar
  3. [3]
    Dong, S. Y.; Li, H. S.; Wang, J. J.; Zhang, X. G.; Ji, X. L. Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017, 10, 4448–4456.CrossRefGoogle Scholar
  4. [4]
    Aravindan, V.; Lee, Y. S.; Madhavi, S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries. Adv. Energy Mater. 2017, 7, 1602607.CrossRefGoogle Scholar
  5. [5]
    Aravindan, V.; Cheah, Y. L.; Mak, W. F.; Wee, G.; Chowdari, B. V. R.; Madhavi, S. Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network. ChemPlusChem 2012, 77, 570–575.CrossRefGoogle Scholar
  6. [6]
    Ding, J.; Wang, H. L.; Li, Z.; Cui, K.; Karpuzov, D.; Tan X. H.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941–955.CrossRefGoogle Scholar
  7. [7]
    Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.CrossRefGoogle Scholar
  8. [8]
    Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 2017, 29, 1702093.CrossRefGoogle Scholar
  9. [9]
    Wang, H. W.; Zhang, Y.; Ang, H. X.; Zhang, Y. Q.; Tan, H. T.; Zhang, Y. F.; Guo, Y. Y.; Franklin, J. B.; Wu, X. L.; Srinivasan, M. et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 2016, 26, 3082–3093.CrossRefGoogle Scholar
  10. [10]
    Suryawanshi, A.; Aravindan, V.; Mhamane, D.; Yadav, P.; Patil, S.; Madhavi, S.; Ogale, S. Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Mater. 2015, 1, 152–157.CrossRefGoogle Scholar
  11. [11]
    Zhang, S. J.; Li, C.; Zhang, X.; Sun, X. Z.; Wang, K.; Ma, Y. W. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl. Mater. Interfaces 2017, 9, 17136–17144.CrossRefGoogle Scholar
  12. [12]
    Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B. et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014, 14, 1987–1994.CrossRefGoogle Scholar
  13. [13]
    Yang, M.; Zhong, Y. R.; Ren, J. J.; Zhou, X. L.; Wei, J. P.; Zhou, Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 2015, 5, 1500550.CrossRefGoogle Scholar
  14. [14]
    Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 2015, 11, 1470–1477.CrossRefGoogle Scholar
  15. [15]
    Tang, G.; Cao, L. J.; Xiao, P.; Zhang, Y. H.; Liu, H. A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode. J. Power Sources 2017, 355, 1–7.CrossRefGoogle Scholar
  16. [16]
    Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200–11208.CrossRefGoogle Scholar
  17. [17]
    Song, M. Y.; Kim, N. R.; Yoon, H. J.; Cho, S. Y.; Jin, H. J.; Yun, Y. S. Long-lasting Nb2O5-based nanocomposite materials for Li-ion storage. ACS Appl. Mater. Interfaces 2017, 9, 2267–2274.CrossRefGoogle Scholar
  18. [18]
    Li, T. Q.; Beidaghi, M.; Xiao, X.; Huang, L.; Hu, Z. M.; Sun, W. M.; Chen, X.; Gogotsi, Y.; Zhou, J. Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy 2016, 26, 100–107.CrossRefGoogle Scholar
  19. [19]
    Liu, W. W.; Li, J. D.; Feng, K.; Sy, A.; Liu, Y. S.; Lim, L.; Lui, G.; Tjandra, R.; Rasenthiram, L.; Chiu, G. et al. Advanced Li-ion hybrid supercapacitors based on 3D graphene-foam composites. ACS Appl. Mater. Interfaces 2016, 8, 25941–25953.CrossRefGoogle Scholar
  20. [20]
    Yang, C.; Lan, J. L.; Liu, W. X.; Liu, Y.; Yu, Y. H.; Yang, X. P. High-performance Li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode. ACS Appl. Mater. Interfaces 2017, 9, 18710–18719.CrossRefGoogle Scholar
  21. [21]
    Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.CrossRefGoogle Scholar
  22. [22]
    Myung, S. T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S. J.; Sun, Y. K.; B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.CrossRefGoogle Scholar
  23. [23]
    Guan, D. D.; Yu, Q.; Xu, C.; Tang, C. J.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Res. 2017, 10, 4351–4359.CrossRefGoogle Scholar
  24. [24]
    Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.CrossRefGoogle Scholar
  25. [25]
    Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.CrossRefGoogle Scholar
  26. [26]
    Zhu, G. Y.; Chen, T.; Wang, L.; Ma, L. B.; Hu, Y.; Chen, R. P.; Wang, Y. R.; Wang, C. X.; Yan, W.; Tie, Z. X. et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 2018, 14, 246–252.CrossRefGoogle Scholar
  27. [27]
    Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 2013, 3, 1500–1506.CrossRefGoogle Scholar
  28. [28]
    Wang, F. X.; Wang, C.; Zhao, Y. J.; Liu, Z. C.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Zhao, D. Y. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 2016, 12, 6207–6213.CrossRefGoogle Scholar
  29. [29]
    Aravindan, V.; Shubha, N.; Ling, W. C.; Madhavi, S. Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J. Mater. Chem. A 2013, 1, 6145–6151.CrossRefGoogle Scholar
  30. [30]
    Wang, G.; Liu, Z. Y.; Wu, J. N.; Lu, Q. Preparation and electrochemical capacitance behavior of TiO2-B nanotubes for hybrid supercapacitor. Mater. Lett. 2012, 71, 120–122.CrossRefGoogle Scholar
  31. [31]
    Jung, H. G.; Venugopal, N.; Scrosati, B.; Sun, Y. K. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 2013, 221, 266–271.CrossRefGoogle Scholar
  32. [32]
    Liu, C. F.; Zhang, C. K.; Fu, H. Y.; Nan, X. H.; Cao, G. Z. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv. Energy Mater. 2017, 7, 1601127.CrossRefGoogle Scholar
  33. [33]
    Wang, X. L.; Li, G.; Tjandra, R.; Fan, X. Y.; Xiao, X. C.; Yu, A. P. Fast lithium-ion storage of Nb2O5 nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Adv. 2015, 5, 41179–41185.CrossRefGoogle Scholar
  34. [34]
    Lim, E.; Jo, C.; Kim, H.; Kim, M. H.; Mun, Y.; Chun, J.; Ye, Y.; Hwang, J.; Ha, K. S.; Roh, K. C. et al. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 2015, 9, 7497–7505.CrossRefGoogle Scholar
  35. [35]
    Luo, J. Y.; Xia, Y. Y. Electrochemical profile of an asymmetric supercapacitor using carbon-coated LiTi2(PO4)3 and active carbon electrodes. J. Power Sources 2009, 186, 224–227.CrossRefGoogle Scholar
  36. [36]
    Du, H. P.; Yang, H.; Huang, C. S.; He, J. J.; Liu, H. B.; Li, Y. L. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615–622.CrossRefGoogle Scholar
  37. [37]
    Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 2018, 14, 1704508.CrossRefGoogle Scholar
  38. [38]
    Huang, H. J.; Wang, X.; Tervoort, E.; Zeng, G. B.; Liu, T.; Chen, X.; Sologubenko, A.; Niederberger, M. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano 2018, 12, 2753–2763.CrossRefGoogle Scholar
  39. [39]
    Ma, L. B.; Gao, X.; Zhang, W. J.; Yuan, H.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy 2018, 53, 91–96.CrossRefGoogle Scholar
  40. [40]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  41. [41]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  42. [42]
    Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.CrossRefGoogle Scholar
  43. [43]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  44. [44]
    Perdew, J. P.; Burke, K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  45. [45]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  46. [46]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  47. [47]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.CrossRefGoogle Scholar
  48. [48]
    Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  49. [49]
    Myung, S. T.; Takahashi, N.; Komaba, S.; Yoon, C. S.; Sun, Y. K.; Amine, K.; Yashiro, H. Nanostructured TiO2 and its application in lithium-ion storage. Adv. Funct. Mater. 2011, 21, 3231–3241.CrossRefGoogle Scholar
  50. [50]
    Tan, H. Q.; Zhao, Z.; Niu, M.; Mao, C. Y.; Cao, D. P.; Cheng, D. J.; Feng, P. Y.; Sun, Z. C. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 2014, 6, 10216–10223.CrossRefGoogle Scholar
  51. [51]
    Zhang, Z. Y.; Xiao, F.; Guo, Y. L.; Wang, S.; Liu, Y. Q. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces 2013, 5, 2227–2233.CrossRefGoogle Scholar
  52. [52]
    Zhu, G. Y.; Chen, T.; Hu, Y.; Ma, L. B.; Chen, R. P.; Lv, H. L.; Wang, Y. R.; Liang, J.; Li, X. J.; Yan, C. Z. et al. Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 2017, 33, 229–237.CrossRefGoogle Scholar
  53. [53]
    Chen, J.; Ding, Z. Y.; Wang, C.; Hou, H. S.; Zhang, Y.; Wang, C. W.; Zou, G. Q.; Ji, X. B. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 2016, 8, 9142–9151.CrossRefGoogle Scholar
  54. [54]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar
  55. [55]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  56. [56]
    Wang, Y.; Su, X. W.; Lu, S. Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries. J. Mater. Chem. 2012, 22, 1969–1976.CrossRefGoogle Scholar
  57. [57]
    Guo, Z. L.; Zhou, J.; Sun, Z. M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 2017, 5, 23530–23535.CrossRefGoogle Scholar
  58. [58]
    Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der w,ls heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150.CrossRefGoogle Scholar
  59. [59]
    Fuertes, A. B.; Sevilla, M. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4344–4353.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guoyin Zhu
    • 1
  • Lianbo Ma
    • 1
  • Huinan Lin
    • 1
  • Peiyang Zhao
    • 1
  • Lei Wang
    • 1
  • Yi Hu
    • 1
  • Renpeng Chen
    • 1
  • Tao Chen
    • 1
  • Yanrong Wang
    • 1
  • Zuoxiu Tie
    • 1
    Email author
  • Zhong Jin
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Shenzhen Research Institute of Nanjing UniversityShenzhenChina

Personalised recommendations