Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots

  • Hao Li
  • Jian Huang
  • Yang LiuEmail author
  • Fang Lu
  • Jun Zhong
  • Yong Wang
  • Shuiming Li
  • Yeshayahu LifshitzEmail author
  • Shuit-Tong Lee
  • Zhenhui KangEmail author
Research Article


The ∼ 5 nm degradable carbon dots (CDs) were synthesized directly from carbon rod by a one-step electrochemical method at room temperature. The as-prepared CDs can effectively enhance the ribulose bisphosphate carboxylase oxygenase (RuBisCO) activity, and then promote the dicotyledons growth (soybean, tomato, eggplant and so on) and finally increase their yields. Here, we used Arabidopsis thaliana and Trifolium repens L. as model plants to systematically study the beneficial effects of CDs on plant growth. These include: (i) accelerating seed germination; (ii) enlarging root elongation; (iii) increasing metal ions absorption and delivery; (iv) improving enzymes activity; (v) enhancing the carbohydrate content; (vi) degradation into plant hormone analogues and CO2; and finally (vii) enhancing the grain production by about 20%.


carbon dots bio-degradation photosynthesis plant life cycle improve growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National MCF Energy R&D Program (No. 2018YFE0306105), the National Natural Science Foundation of China (Nos. 51725204, 51572179, 21771132, and 21471106), the Natural Science Foundation of Jiangsu Province (No. BK20161216), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Supplementary material

12274_2019_2397_MOESM1_ESM.pdf (6.3 mb)
Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots


  1. [1]
    Hamilton, A.; Hamilton, P. Plant Conservation: An Ecosystem Approach; Earthscan: London, 2006.Google Scholar
  2. [2]
    Kesler, S. E.; Simon, A. C. Mineral Resources, Economics and the Environment; Cambridge University: Cambridge, 2015.CrossRefGoogle Scholar
  3. [3]
    Zheng, L.; Hong, F. S.; Lu, S. P.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005, 104, 83–91.CrossRefGoogle Scholar
  4. [4]
    Hong, F. S.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005, 105, 269–279.CrossRefGoogle Scholar
  5. [5]
    Gao, F. Q.; Hong, F. S.; Liu, C.; Zheng, L.; Su, M. Y.; Wu, X.; Yang, F.; Wu, C.; Yang, P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biol. Trace Elem. Res. 2006, 111, 239–253.CrossRefGoogle Scholar
  6. [6]
    Zheng, L.; Su, M. Y.; Liu, C.; Chen, L.; Huang, H.; Wu, X.; Liu, X. Q.; Yang, F.; Gao, F. Q.; Hong, F. S. Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol. Trace Elem. Res. 2007, 119, 68–76.CrossRefGoogle Scholar
  7. [7]
    Gao, F. Q.; Liu, C.; Qu, C. X.; Zheng, L.; Yang, F.; Su, M. Y.; Hong, F. S. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? BioMetals 2008, 21, 211–217.CrossRefGoogle Scholar
  8. [8]
    Ma, L. L.; Liu, C.; Qu, C. X.; Yin, S. T.; Liu, J.; Gao, F. Q.; Hong, F. H. Rubisco activase mRNA expression in spinach: Modulation by nanoanatase treatment. Biol. Trace Elem. Res. 2008, 122, 168–178.CrossRefGoogle Scholar
  9. [9]
    Wang, X. M.; Gao, F. Q.; Ma, L. L.; Liu, J.; Yin, S. T.; Yang, P.; Hong, F. S. Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biol. Trace Elem. Res. 2008, 126, 280–289.CrossRefGoogle Scholar
  10. [10]
    Su, M. Y.; Liu, J.; Yin, S. T.; Ma, L. L.; Hong, F. S. Effects of nanoanatase on the photosynthetic improvement of chloroplast damaged by linolenic acid. Biol. Trace Elem. Res. 2008, 124, 173–183.CrossRefGoogle Scholar
  11. [11]
    Yang, F.; Hong, F. S.; You, W. J.; Liu, C.; Gao, F. Q.; Wu, C.; Yang, P. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006, 110, 179–190.CrossRefGoogle Scholar
  12. [12]
    Shah, V.; Belozerova, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, Soil Pollut. 2009, 197, 143–148.CrossRefGoogle Scholar
  13. [13]
    Husen, A.; Siddiqi, K. S. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnology 2014, 12, 16.CrossRefGoogle Scholar
  14. [14]
    Qu, G. B.; Bai, Y. H.; Zhang, Y.; Jia, Q.; Zhang, W. D.; Yan, B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 2009, 47, 2060–2069.CrossRefGoogle Scholar
  15. [15]
    Liu, Q. L.; Chen, B.; Wang, Q. L.; Shi, X. L.; Xiao, Z. Y.; Lin, J. X.; Fang, X. H. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009, 9, 1007–1010.CrossRefGoogle Scholar
  16. [16]
    Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 2008, 24, 6409–6413.CrossRefGoogle Scholar
  17. [17]
    Tripathi, S.; Sonkar, S. K.; Sarkar, S. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 2011, 3, 1176–1181.CrossRefGoogle Scholar
  18. [18]
    Sonkar, S. K.; Roy, M.; Babar, D. G.; Sarkar, S. Water soluble carbon nanoonions from wood wool as growth promoters for gram plants. Nanoscale 2012, 4, 7670–7675.CrossRefGoogle Scholar
  19. [19]
    Tripathi, K. M.; Bhati, A., Singh, A.; Sonker, A. K.; Sarkar, S.; Sonkar, S. K. Sustainable changes in the contents of metallic micronutrients in first generation gram seeds imposed by carbon nano-onions: Life cycle seed to seed study. ACS Sustainable Chem. Eng. 2017, 5, 2906–2916.CrossRefGoogle Scholar
  20. [20]
    Villagarcia, H.; Dervishi, E.; De Silva, K.; Biris, A. S.; Khodakovskaya, M. V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012, 8, 2328–2334.CrossRefGoogle Scholar
  21. [21]
    Lahiani, M. H.; Dervishi, E.; Chen, J. H.; Nima, Z.; Gaume, A.; Biris, A. S.; Khodakovskaya, M. V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces 2013, 5, 7965–7973.CrossRefGoogle Scholar
  22. [22]
    Lahiani, M. H.; Dervishi, E.; Ivanov, I.; Chen, J. H.; Khodakovskaya, M. Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 2016, 27, 265102.CrossRefGoogle Scholar
  23. [23]
    Kole, C.; Kole, P.; Randunu, K. M.; Choudhary, P.; Podila, R.; Ke, P. C.; Rao, A. M.; Marcus, R. K. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013, 13, 37.CrossRefGoogle Scholar
  24. [24]
    Saxena, M.; Maity, S.; Sarkar, S. Carbon nanoparticles in “biochar” boost wheat (Triticum aestivum) plant growth. RSC Adv. 2014, 4, 39948–39954.CrossRefGoogle Scholar
  25. [25]
    Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.CrossRefGoogle Scholar
  26. [26]
    Li, H.; Guo, S. J.; Li, C. X.; Huang, H.; Liu, Y.; Kang, Z. H. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. ACS Appl. Mater. Interfaces 2015, 7, 10004–10012.CrossRefGoogle Scholar
  27. [27]
    Abu-Ghosh, S.; Kumar, V. B.; Fixler, D.; Dubinsky, Z.; Gedanken, A.; Iluz, D. Nitrogen-doped carbon dots prepared from bovine serum albumin to enhance algal astaxanthin production. Algal Res. 2017, 23, 161–165.CrossRefGoogle Scholar
  28. [28]
    Liu, X. J.; Liu, L. T.; Hu, X. J.; Zhou, S. Y.; Ankri, R.; Fixler, D.; Xie, Z. Multimodal bioimaging based on gold nanorod and carbon dot nano-hybrids as a novel tool for atherosclerosis detection. Nano Res. 2018, 11, 1262–1273.CrossRefGoogle Scholar
  29. [29]
    Niu, Y. F.; Ling, G.; Wang, L.; Guan, S. Y.; Xie, Z.; Barnoy, E. A.; Zhou, S. Y.; Fixler, D. Gold rod-polyethylene glycol-carbon dot nanohybrids as phototheranostic probes. Nanomaterials 2018, 8, 706.CrossRefGoogle Scholar
  30. [30]
    Guo, S. J.; Zhao, S. Q.; Wu, X. Q.; Li, H.; Zhou, Y. J.; Zhu, C.; Yang, N. J.; Jiang, X.; Gao, J.; Bai, L. et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat. Commun. 2017, 8, 1828.CrossRefGoogle Scholar
  31. [31]
    Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.CrossRefGoogle Scholar
  32. [32]
    Yu, H.; Du, L. B.; Guan, L. M.; Zhang, K.; Li, Y. Y.; Zhu, H. J.; Sun, M. T.; Wang, S. H. A ratiometric fluorescent probe based on the pi-stacked graphene oxide and cyanine dye for sensitive detection of bisulfite. Sens. Actuators B: Chem. 2017, 247, 823–829.CrossRefGoogle Scholar
  33. [33]
    Yan, Y. H.; Yu, H.; Zhang, K.; Sun, M. T.; Zhang, Y. J.; Wang, X. K.; Wang, S. H. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 2016, 9, 2088–2096.CrossRefGoogle Scholar
  34. [34]
    Ge, H. W.; Zhang, K.; Yu, H.; Yue, J.; Yu, L.; Chen, X. F.; Hou, T. X.; Alamry, K. A.; Marwani, H. M.; Wang, S. H. Sensitive and selective detection of antibiotic d-penicillamine based on a dual-mode probe of fluorescent carbon dots and gold nanoparticles. J. Fluoresc. 2018, 28, 1405–1412.CrossRefGoogle Scholar
  35. [35]
    Li, H.; Kong, W. Q.; Liu, J.; Liu, N. Y.; Huang, H.; Liu, Y.; Kang, Z. H. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 2015, 91, 66–75.CrossRefGoogle Scholar
  36. [36]
    Lu, F.; Song, Y. X.; Huang, H.; Liu, Y.; Fu, Y. J.; Huang, J.; Li, H.; Qu, H. H.; Kang, Z. H. Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon 2017, 120, 95–102.CrossRefGoogle Scholar
  37. [37]
    Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.CrossRefGoogle Scholar
  38. [38]
    Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.CrossRefGoogle Scholar
  39. [39]
    Jermyn, M. A. Increasing the sensitivity of the anthrone method for carbohydrate. Anal. Biochem. 1975, 68, 332–335.CrossRefGoogle Scholar
  40. [40]
    Loewus, F. A. Improvement in anthrone method for determination of carbohydrates. Anal. Chem. 1952, 24, 219.CrossRefGoogle Scholar
  41. [41]
    Hohl, H.; Stumm, W. Interaction of Pb2+ with hydrous γ-Al2O3. J. Colloid Interface Sci. 1976, 55, 281–288.CrossRefGoogle Scholar
  42. [42]
    Crocker, M.; Herold, R. H. M.; Sonnemans, M. H. W.; Emeis, C. A.; Wilson, A. E.; Van Der Moolen, J. N. Studies on the acidity of mordenite and ZSM 5. 1. Determination of broensted acid site concentrations in mordenite and ZSM 5 by conductometric titration. J. Phys. Chem. 1993, 97, 432–439.CrossRefGoogle Scholar
  43. [43]
    Hunt, J. P.; Taube, H. The photochemical decomposition of hydrogen peroxide. Quantum yields, tracer and fractionation effects. J. Am. Chem. Soc. 1952, 74, 5999–6002.CrossRefGoogle Scholar
  44. [44]
    Zhao, Y.; Allen, B. L.; Star, A. Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 2011, 115, 9536–9544.CrossRefGoogle Scholar
  45. [45]
    Lan, Y.; Mott, K. A. Determination of apparent K m values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of rubisco activity. Plant Physiol. 1991, 95, 604–609.CrossRefGoogle Scholar
  46. [46]
    Chong, Y.; Ma, Y. F.; Shen, H.; Tu, X. L.; Zhou, X.; Xu, J. Y.; Dai, J. W.; Fan, S. J.; Zhang, Z. J. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 2014, 35, 5041–5048.CrossRefGoogle Scholar
  47. [47]
    Ming, H.; Ma, Z.; Liu, Y.; Pan, K. M.; Yu, H.; Wang, F.; Kang, Z. H. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526–9531.CrossRefGoogle Scholar
  48. [48]
    Li, H.; Zhang, M. L.; Song, Y. X.; Wang, H. B.; Liu, C. A.; Fu, Y. J.; Huang, H.; Liu, Y.; Kang, Z. H. Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. J. Mater. Chem. B 2018, 6, 5708–5717.CrossRefGoogle Scholar
  49. [49]
    Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z. R.; Watanabe, F.; Biris, A. S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009, 3, 3221–3227.CrossRefGoogle Scholar
  50. [50]
    Wilson, A. T.; Calvin, M. The Photosynthetic cycle. CO2 dependent transients. J. Am. Chem. Soc. 1955, 77, 5948–5957.CrossRefGoogle Scholar
  51. [51]
    Walker, D. A. Three phases of chloroplast research. Nature 1970, 226, 1204–1208.CrossRefGoogle Scholar
  52. [52]
    Lin, M. T.; Occhialini, A.; Andralojc, P. J.; Parry, M. A. J.; Hanson, M. R. A faster rubisco with potential to increase photosynthesis in crops. Nature 2014, 513, 547–550.CrossRefGoogle Scholar
  53. [53]
    Wong, S. W.; Cowan, I. R.; Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 1979, 282, 424–426.CrossRefGoogle Scholar
  54. [54]
    Kotchey, G. P.; Hasan, S. A.; Kapralov, A. A.; Ha, S. H.; Kim, K.; Shvedova, A. A.; Kagan, V. E.; Star, A. A natural vanishing act: The enzyme-catalyzed degradation of carbon nanomaterials. Acc. Chem. Res. 2012, 45, 1770–1781.CrossRefGoogle Scholar
  55. [55]
    Allen, B. L.; Kotchey, G. P.; Chen, Y. N.; Yanamala, N. V. K.; Klein-Seetharaman, J.; Kagan, V. E.; Star, A. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 17194–17205.CrossRefGoogle Scholar
  56. [56]
    Went, F. W.; Thimann, K. V. Phytohormones; The Macmillan Company: New York, 1937.Google Scholar
  57. [57]
    Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhouChina
  2. 2.School of biology & basic medical sciencesSoochow universitySuzhouChina
  3. 3.College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and EcologyShenzhen UniversityShenzhenChina
  4. 4.School of Basic Medical SciencesBeijing University of Chinese MedicineBeijingChina
  5. 5.Department of Materials Science and Engineering, TechnionIsrael Institute of TechnologyHaifaIsrael

Personalised recommendations