Advertisement

Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption

  • Qian Wang
  • Di Li
  • Junyan Xiao
  • Fucheng Guo
  • Limin QiEmail author
Research Article
  • 55 Downloads

Abstract

Stimuli-responsive self-assembly of nanoparticles represents a powerful strategy to achieve reconfigurable materials with novel functionalities and promising applications. In this regard, light-induced reversible self-assembly (LIRSA) of nanoparticles is most attractive but it is usually limited by the prerequisite yet cumbersome chemical functionalizations of the particle surface. Here we describe an innovative method to realize LIRSA of gold nanorods (GNRs) without surface functionalization through photoswitchable adsorption of an anionic azobenzene derivate AzoNa. The LIRSA of GNRs is caused by the reversible change between a nearly neutral state and a highly charged state of the GNRs arising from the photoswichable adsorption of AzoNa triggered by photoisomerization. The LIRSA behavior can be readily adjusted by changing the concentration of AzoNa and the aspect ratio of the GNRs. This new LIRSA strategy may provide a convenient and efficient route toward light-triggered reversibly reconfigurable nanomaterials.

Keywords

self-assembly of nanoparticles gold nanorods reversible self-assembly photoswichable adsorption reconfigurable nanomaterials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21673007).

Supplementary material

References

  1. [1]
    Grzybowski, B. A.; Fitzner, K.; Paczesny, J.; Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 2017, 46, 5647–5678.CrossRefGoogle Scholar
  2. [2]
    Qian, Z. X.; Ginger, D. S. Reversibly reconfigurable colloidal plasmonic nanomaterials. J. Am. Chem. Soc. 2017, 139, 5266–5276.CrossRefGoogle Scholar
  3. [3]
    Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.CrossRefGoogle Scholar
  4. [4]
    Li, D.; Qi, L. M. Self-assembly of inorganic nanoparticles mediated by host-guest interactions. Curr. Opin. Colloid Interface Sci. 2018, 35, 59–67.CrossRefGoogle Scholar
  5. [5]
    Zhang, Q.; Wang, W. Z.; Yu, J. J.; Qu, D. H.; Tian, H. Dynamic self-assembly encodes a tri-stable Au-TiO2 photocatalyst. Adv. Mater. 2017, 29, 1604948.CrossRefGoogle Scholar
  6. [6]
    Nie, Z. H.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614.CrossRefGoogle Scholar
  7. [7]
    Sánchez-Iglesias, A.; Claes, N.; Solís, D. M.; Taboada, J. M.; Bals, S.; Liz-Marzán, L. M.; Grzelczak, M. Reversible clustering of gold nanoparticles under confinement. Angew. Chem., Int. Ed. 2018, 57, 3183–3186.CrossRefGoogle Scholar
  8. [8]
    Rao, A.; Roy, S.; Unnikrishnan, M.; Bhosale, S. S.; Devatha, G.; Pillai, P. P. Regulation of interparticle forces reveals controlled aggregation in charged nanoparticles. Chem. Mater. 2016, 28, 2348–2355.CrossRefGoogle Scholar
  9. [9]
    Zhang, Q.; Qu, D. H.; Wang, Q. C.; Tian, H. Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction. Angew. Chem., Int. Ed. 2015, 54, 15789–15793.CrossRefGoogle Scholar
  10. [10]
    Gurunatha, K. L.; Fournier, A. C.; Urvoas, A.; Valerio-Lepiniec, M.; Marchi, V.; Minard, P.; Dujardin, E. Nanoparticles self-assembly driven by high affinity repeat protein pairing. ACS Nano 2016, 10, 3176–3185.CrossRefGoogle Scholar
  11. [11]
    Borsley, S.; Kay, E. R. Dynamic covalent assembly and disassembly of nanoparticle aggregates. Chem. Commun. 2016, 52, 9117–9120.CrossRefGoogle Scholar
  12. [12]
    Liu, Y. D.; Han, X. G.; He, L.; Yin, Y. D. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem., Int. Ed. 2012, 51, 6373–6377.CrossRefGoogle Scholar
  13. [13]
    Nonappa; Haataja, J. S.; Timonen, J. V. I.; Malola, S.; Engelhardt, P.; Houbenov, N.; Lahtinen, M.; Häkkinen, H.; Ikkala, O. Reversible supracolloidal self-assembly of cobalt nanoparticles to hollow capsids and their superstructures. Angew. Chem., Int. Ed. 2017, 56, 6473–6477.CrossRefGoogle Scholar
  14. [14]
    Yu, Y. X.; Yu, D.; Orme, C. A. Reversible, tunable, electric-field driven assembly of silver nanocrystal superlattices. Nano Lett. 2017, 17, 3862–3869.CrossRefGoogle Scholar
  15. [15]
    Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem., Int. Ed. 2015, 54, 7077–7081.CrossRefGoogle Scholar
  16. [16]
    Klajn, R.; Bishop, K. J. M.; Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl. Acad. Sci. USA 2007, 104, 10305–10309.CrossRefGoogle Scholar
  17. [17]
    Yan, Y. Q.; Chen, J. I. L.; Ginger, D. S. Photoswitchable oligonucleotide-modified gold nanoparticles: Controlling hybridization stringency with photon dose. Nano Lett. 2012, 12, 2530–2536.CrossRefGoogle Scholar
  18. [18]
    Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.CrossRefGoogle Scholar
  19. [19]
    Chen, Y. H.; Wang, Z. W.; He, Y. J.; Yoon, Y. J.; Jung, J.; Zhang, G. Z.; Lin, Z. Q. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E1391–E1400.CrossRefGoogle Scholar
  20. [20]
    Lu, X. F.; Huang, Y. J.; Liu, B. Q.; Zhang, L.; Song, L. P.; Zhang, J. W.; Zhang, A. F.; Chen, T. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater. 2018, 30, 1989–1997.CrossRefGoogle Scholar
  21. [21]
    Manna, D.; Udayabhaskararao, T.; Zhao, H.; Klajn, R. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes. Angew. Chem., Int. Ed. 2015, 54, 12394–12397.CrossRefGoogle Scholar
  22. [22]
    Zhao, H. B.; Sen, S.; Udayabhaskararao, T.; Sawczyk, M.; Kučanda, K.; Manna, D.; Kundu, P. K.; Lee, J. W.; Král, P.; Klajn, R. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 2016, 11, 82–88.CrossRefGoogle Scholar
  23. [23]
    He, H. B.; Feng, M.; Chen, Q. D.; Zhang, X. Q.; Zhan, H. B. Light-induced reversible self-assembly of gold nanoparticles surface-immobilized with coumarin ligands. Angew. Chem., Int. Ed. 2016, 55, 936–940.CrossRefGoogle Scholar
  24. [24]
    Samanta, D.; Klajn, R. Aqueous light-controlled self-assembly of nanoparticles. Adv. Opt. Mater. 2016, 4, 1373–1377.CrossRefGoogle Scholar
  25. [25]
    Lan, X.; Su, Z. M.; Zhou, Y. D.; Meyer, T.; Ke, Y. G.; Wang, Q. B.; Chiu, W.; Liu, N.; Zou, S. L.; Yan, H. et al. Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem., Int. Ed. 2017, 56, 14632–14636.CrossRefGoogle Scholar
  26. [26]
    Lin, H. X.; Lee, S.; Sun, L.; Spellings, M.; Engel, M.; Glotzer, S. C.; Mirkin, C. A. Clathrate colloidal crystals. Science 2017, 355, 931–935.CrossRefGoogle Scholar
  27. [27]
    Wang, Q.; Wang, Z. P.; Li, Z.; Xiao, J. Y.; Shan, H. Y.; Fang, Z. Y.; Qi, L. M. Controlled growth and shape-directed self-assembly of gold nanoarrows. Sci. Adv. 2017, 3, e1701183.CrossRefGoogle Scholar
  28. [28]
    Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral Au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties. Nano Res. 2016, 9, 451–157.CrossRefGoogle Scholar
  29. [29]
    Sun, Z. H.; Ni, W. H.; Yang, Z.; Kou, X. S.; Li, L.; Wang, J. F. pH-controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4, 1287–1292.CrossRefGoogle Scholar
  30. [30]
    Sreeprasad, T. S.; Pradeep, T. Reversible assembly and disassembly of gold nanorods induced by EDTA and its application in SERS tuning. Langmuir 2011, 27, 3381–3390.CrossRefGoogle Scholar
  31. [31]
    Iida, R.; Mitomo, H.; Niikura, K.; Matsuo, Y.; Ijiro, K. Two-step assembly of thermoresponsive gold nanorods coated with a single kind of ligand. Small 2018, 14, 1704230.CrossRefGoogle Scholar
  32. [32]
    Wu, J.; Xu, Y.; Li, D. F.; Ma, X.; Tian, H. End-to-end assembly and disassembly of gold nanorods based on photo-responsive host-guest interaction. Chem. Commun. 2017, 53, 4577–4580.CrossRefGoogle Scholar
  33. [33]
    Lin, Y. Y.; Cheng, X. H.; Qiao, Y.; Yu, C. L.; Li, Z. B.; Yan, Y.; Huang, J. B. Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 2010, 6, 902–908.CrossRefGoogle Scholar
  34. [34]
    Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.CrossRefGoogle Scholar
  35. [35]
    Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.CrossRefGoogle Scholar
  36. [36]
    Zhang, L.; Dai, L. W.; Rong, Y.; Liu, Z. Z.; Tong, D. Y.; Huang, Y. J.; Chen, T. Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. Langmuir 2015, 31, 1164–1171.CrossRefGoogle Scholar
  37. [37]
    Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.CrossRefGoogle Scholar
  38. [38]
    Orendorff, C. J.; Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006, 110, 3990–3994.CrossRefGoogle Scholar
  39. [39]
    Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1,200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.CrossRefGoogle Scholar
  40. [40]
    Ruan, Q. F.; Shao, L.; Shu, Y. W.; Wang, J. F.; Wu, H. K. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2014, 2, 65–73.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qian Wang
    • 1
  • Di Li
    • 1
  • Junyan Xiao
    • 1
  • Fucheng Guo
    • 1
  • Limin Qi
    • 1
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), College of ChemistryPeking UniversityBeijingChina

Personalised recommendations