Stepwise magnetization reversal of geometrically tuned in diameter Ni and FeCo bi-segmented nanowire arrays

  • Ester M. PalmeroEmail author
  • Miguel Méndez
  • Silvia González
  • Cristina Bran
  • Víctor Vega
  • Manuel Vázquez
  • Víctor M. Prida
Research Article


Magnetization reversal processes of hexagonal dense arrays of bi-segmented Ni and Fe50Co50 nanowires consisting of two well defined diameters (45 and 80 nm) have been studied. The nanowires were grown inside of tailored pores of anodic alumina templates by combined anodization, atomic layer deposition (ALD) and electrodeposition techniques. The experiments have allowed to identify their two-step magnetization reversal process ascribed to the respective segments of different diameter. This is concluded from the differential susceptibility observed in the hysteresis loops, contrary to those for nanowires with homogeneous diameter. These results are also confirmed by the first-order reversal curve (FORC) distribution diagrams, where an elongation parallel to the interaction axis around two coercive field values is obtained, which is correlated to the difference in diameter of the two segments. This well-defined two-step magnetization reversal process through the nanowire diameter design is thought to be very useful for the advanced control of the remagnetization in arrays of magnetic multidomain systems.


Bi-segmented nanowires nickel iron cobalt alloy stepwise magnetization reversal first-order reversal curve (FORC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) through the research Projects MAT2013-48054-C2-1-R, MAT2013-48054-C2-2-R, MAT2016-76824-C3-1-R and MAT2016-76824-C3-3-R. The scientific support from the SCTs of the University of Oviedo is also acknowledged.

Supplementary material

12274_2019_2385_MOESM1_ESM.pdf (959 kb)
Stepwise magnetization reversal of geometrically tuned in diameter Ni and FeCo bi-segmented nanowire arrays


  1. [1]
    Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692.CrossRefGoogle Scholar
  2. [2]
    Allwood, D. A.; Xiong, G.; Cowburn, R. P. Writing and erasing data in magnetic domain wall logic systems. J. Appl. Phys. 2006, 100, 123908.CrossRefGoogle Scholar
  3. [3]
    Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.CrossRefGoogle Scholar
  4. [4]
    Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 2008, 320, 209–211.CrossRefGoogle Scholar
  5. [5]
    Kou, X. M.; Fan, X.; Dumas, R. K.; Lu, Q.; Zhang, Y. P.; Zhu, H.; Zhang, X. K.; Liu, K.; Xiao, J. Q. Memory effect in magnetic nanowire arrays. Adv. Mater. 2011, 23, 1393–1397.CrossRefGoogle Scholar
  6. [6]
    Lee, D. J.; Kim, E.; Kim, D.; Park, J.; Hong, S. Nano-storage wires. ACS Nano 2013, 7, 6906–6913.CrossRefGoogle Scholar
  7. [7]
    Grutter, A. J.; Krycka, K. L.; Tartakovskaya, E. V.; Borchers, J. A.; Reddy, K. S. M.; Ortega, E.; Ponce, A.; Stadler, B. J. H. Complex three-dimensional magnetic ordering in segmented nanowire arrays. ACS Nano 2017, 11, 8311–8319.CrossRefGoogle Scholar
  8. [8]
    Sergelius, P.; Moreno, J. M. M.; Rahimi, W.; Waleczek, M.; Zierold, R.; Görlitz, D.; Nielsch, K. Electrochemical synthesis of highly ordered nanowires with a rectangular cross section using an in-plane nanochannel array. Nanotechnology 2014, 25, 504002.CrossRefGoogle Scholar
  9. [9]
    Pitzschel, K.; Moreno, J. M. M.; Escrig, J.; Albrecht, O.; Nielsch, K.; Bachmann, J. Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. ACS Nano 2009, 3, 3463–3468.CrossRefGoogle Scholar
  10. [10]
    Esmaeily, A. S.; Venkatesan, M.; Razavian, A. S.; Coey, J. M. D. Diameter-modulated ferromagnetic CoFe nanowires. J. Appl. Phys. 2013, 113, 17A327.CrossRefGoogle Scholar
  11. [11]
    Minguez-Bacho, I.; Rodriguez-López, S.; Vázquez, M.; Hernández-Vélez, M.; Nielsch, K. Electrochemical synthesis and magnetic characterization of periodically modulated Co nanowires. Nanotechnology 2014, 25, 145301.CrossRefGoogle Scholar
  12. [12]
    Prida, V. M.; García, J.; Iglesias, L.; Vega, V.; Görlitz, D.; Nielsch, K.; Barriga-Castro, E. D.; Mendoza-Reséndez, R.; Ponce, A.; Luna, C. Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 2013, 8, 263.CrossRefGoogle Scholar
  13. [13]
    Méndez, M.; González, S.; Vega, V.; Teixeira, J. M.; Hernando, B.; Luna, C.; Prida, V. M. Ni-Co alloy and multisegmented Ni/Co nanowire arrays modulated in composition: Structural characterization and magnetic properties. Crystals 2017, 7, 66.CrossRefGoogle Scholar
  14. [14]
    Salem, M. S.; Tejo, F.; Zierold, R.; Sergelius, P.; Moreno, J. M. M.; Goerlitz, D.; Nielsch, K.; Escrig, J. Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. Nanotechnology 2018, 29, 065602.CrossRefGoogle Scholar
  15. [15]
    Neumann, R. F.; Bahiana, M.; Allende, S.; Altbir, D.; Görlitz, D.; Nielsch, K. Tailoring the nucleation of domain walls along multi-segmented cylindrical nanoelements. Nanotechnology 2015, 26, 215701.CrossRefGoogle Scholar
  16. [16]
    Méndez, M.; Vega, V.; González, S.; Caballero-Flores, R.; García, J.; Prida, V. M. Effect of sharp diameter geometrical modulation on the magnetization reversal of bi-segmented FeNi nanowires. Nanomaterials 2018, 8, 595.CrossRefGoogle Scholar
  17. [17]
    Bochmann, S.; Döhler, D.; Trapp, B.; Stano M.; Fruchart, O.; Bachmann J. Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires. J. Appl. Phys. 2018, 124, 163907.CrossRefGoogle Scholar
  18. [18]
    Pitzschel, K.; Bachmann, J.; Martens, S.; Montero-Moreno, J. M.; Kimling, J.; Meier, G.; Escrig, J.; Nielsch, K.; Görlitz, D. Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J. Appl. Phys. 2011, 109, 033907.CrossRefGoogle Scholar
  19. [19]
    Burn, D. M.; Arac, E.; Atkinson, D. Magnetization switching and domain-wall propagation behavior in edge-modulated ferromagnetic nanowire structures. Phys. Rev. B 2013, 88, 104422.CrossRefGoogle Scholar
  20. [20]
    Salem, M. S.; Sergelius, P.; Corona, R. M.; Escrig, J.; Görlitz D.; Nielsch, K. Magnetic properties of cylindrical diameter modulated Ni80Fe20 nanowires: Interaction and coercive fields. Nanoscale 2013, 5, 3941–3947.CrossRefGoogle Scholar
  21. [21]
    Zeng, H.; Michalski, S.; Kirby, R. D.; Sellmeyer, D. J.; Menon, L.; Bandyopadhyay, S. Effects of surface morphology on magnetic properties of Ni nanowire arrays in self-ordered porous alumina. J. Phys. Condens. Mat. 2002, 14, 715–721.CrossRefGoogle Scholar
  22. [22]
    Kumar, A.; Fähler, S.; Schlörb, H.; Leistner, K.; Schultz, L. Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys. Rev. B 2006, 73, 064421.CrossRefGoogle Scholar
  23. [23]
    Bran, C.; Palmero, E. M.; Li, Z. A.; del Real, R. P.; Spasova, M.; Farle, M.; Vázquez, M. Correlation between structure and magnetic properties in CoxFe100−x nanowires: The roles of composition and wire diameter. J. Phys. D: Appl. Phys. 2015, 48, 145304.CrossRefGoogle Scholar
  24. [24]
    Palmero, E. M.; Bran, C.; del Real, R. P.; Vázquez, M. Vortex domain wall propagation in periodically modulated diameter FeCoCu nanowire as determined by the magneto-optical Kerr effect. Nanotechnology 2015, 26, 461001.CrossRefGoogle Scholar
  25. [25]
    Bran, C.; Berganza, E.; Palmero, E. M.; Fernandez-Roldan, J. A.; del Real, R. P.; Aballe, L.; Foerster, M.; Asenjo, A.; Fraile Rodriguez, A.; Vazquez, M. Spin configuration of cylindrical bamboo-like magnetic nanowires. J. Mater. Chem. C 2016, 4, 978–984.CrossRefGoogle Scholar
  26. [26]
    Hertel, R.; Kirschner, J. Magnetization reversal dynamics in nickel nanowires. Phys B: Condens. Matter 2004, 343, 206–210.CrossRefGoogle Scholar
  27. [27]
    Ivanov, Y. P.; Vázquez, M.; Chubykalo-Fesenko, O. Magnetic reversal modes in cylindrical nanowires. J. Phys. D: Appl. Phys. 2013, 46, 485001.CrossRefGoogle Scholar
  28. [28]
    Bran, C.; Ivanov, Y. P.; García, J.; del Real, R. P.; Prida, V. M.; Chubykalo-Fesenko, O.; Vazquez, M. Tuning the magnetization reversal process of FeCoCu nanowire arrays by thermal annealing. J. Appl. Phys. 2013, 114, 043908.CrossRefGoogle Scholar
  29. [29]
    Vock, S.; Hengst, C.; Wolf, M.; Tschulik, K.; Uhlemann, M.; Sasvári, Z.; Makarov, D.; Schmidt, O. G.; Schultz, L.; Neu, V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett. 2014, 105, 172409.CrossRefGoogle Scholar
  30. [30]
    Spinu, L.; Stancu, A.; Radu, C.; Li, F.; Wiley, J. B. Method for magnetic characterization of nanowire structures. IEEE Trans. Magn. 2004, 40, 2116–2118.CrossRefGoogle Scholar
  31. [31]
    Béron, F.; Clime, L.; Ciureanu, M.; Ménard, D.; Cochrane, R. W.; Yelon, A. Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays. J. Nanosci. Nanotechnol. 2008, 8, 2944–2954.CrossRefGoogle Scholar
  32. [32]
    Navas, D.; Torrejon, J.; Béron, F.; Redondo, C.; Batallan, F.; Toperverg, B. P.; Devishvili, A.; Sierra, B.; Castaño, F.; Pirota, K. R. et al. Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies. New J. Phys. 2012, 14, 113001.CrossRefGoogle Scholar
  33. [33]
    Proenca, M. P.; Merazzo, K. J.; Vivas, L. G.; Leitao, D. C.; Sousa, C. T.; Ventura, J.; Araujo, J. P.; Vazquez, M. Co nanostructures in ordered templates: Comparative FORC analysis. Nanotechnology 2013, 24, 475703.CrossRefGoogle Scholar
  34. [34]
    Almasi-Kashi, M.; Ramazani, A.; Golafshan, E.; Arefpour, M.; Jafari-Khamse, E. First order reversal curve investigation of the hard and soft magnetic phases of annealed CoFeCu nanowire arrays. Phys B: Condens. Matter 2013, 429, 46–51.CrossRefGoogle Scholar
  35. [35]
    Palmero, E. M.; Béron, F.; Bran, C.; del Real, R. P.; Vázquez, M. Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 2016, 27, 435705.CrossRefGoogle Scholar
  36. [36]
    Béron, F.; Pirota, K. R.; Vega, V.; Prida, V. M.; Fernández, A.; Hernando, B. Knobel, M. An effective method to probe local magnetostatic properties in a nanometric FePd antidot array. New J. Phys. 2011, 13, 013035.CrossRefGoogle Scholar
  37. [37]
    Bachmann, J.; Zierold, R.; Chong, Y. T.; Hauert, R.; Sturm, C.; Schmidt-Grund, R.; Rheinländer, B.; Grundmann, M.; Gösele, U.; Nielsch, K. A practical, self-catalytic, atomic layer deposition of silicon dioxide. Angew. Chem., Int. Ed. 2008, 47, 6177–6179.CrossRefGoogle Scholar
  38. [38]
    Dobrotă, C. I.; Stancu, A. What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J. Appl. Phys. 2013, 113, 043928.CrossRefGoogle Scholar
  39. [39]
    Barandiaran, J. M.; Vázquez, M.; Hernando, A.; González, J.; Rivero, G. Distribution of the magnetic anisotropy in amorphous alloys ribbons. IEEE Trans. Magn. 1989, 25, 3330–3332.CrossRefGoogle Scholar
  40. [40]
    Vega, V.; Böhnert, T.; Martens, S.; Waleczek, M.; Montero-Moreno, J. M.; Görlitz, D.; Prida, V. M.; Nielsch, K. Tuning the magnetic anisotropy of Co-Ni nanowires: Comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 2012, 23, 465709.CrossRefGoogle Scholar
  41. [41]
    Béron, F.; Ménard, D.; Yelon, A. First-order reversal curve diagrams of magnetic entities with mean interaction field: A physical analysis perspective. J. Appl. Phys. 2008, 103, 07D908.CrossRefGoogle Scholar
  42. [42]
    Béron, F.; Carignan, L. P.; Ménard, D.; Yelon, A. Extracting individual properties from global behaviour: First-order reversal curve method applied to magnetic nanowire arrays. In Electrodeposited Nanowires and Their Applications; Lupu, N., Ed.; IntechOpen: Vienna, 2010; pp 167–188.Google Scholar
  43. [43]
    Rotaru, A.; Lim, J. H.; Lenormand, D.; Diaconu, A.; Wiley, J. B.; Postolache, P.; Stancu, A.; Spinu, L. Interactions and reversal-field memory in complex magnetic nanowire arrays. Phys. Rev. B 2011, 84, 134431.CrossRefGoogle Scholar
  44. [44]
    Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 2015, 378, 73–83.CrossRefGoogle Scholar
  45. [45]
    Sergelius, P.; Fernandez, J. G.; Martens, S.; Zocher, M.; Böhnert, T.; Martinez, V. V.; de la Prida, V. M.; Görlitz, D.; Nielsch, K. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: A comparative study. J. Phys. D: Appl. Phys. 2016, 49, 145005.CrossRefGoogle Scholar
  46. [46]
    Raposo, V.; Zazo, M.; Flores, A. G.; García, J.; Vega, V.; Iñiguez, J.; Prida, V. M. Ferromagnetic resonance in low interacting permalloy nanowire arrays. J. Appl. Phys. 2016, 119, 143903.CrossRefGoogle Scholar
  47. [47]
    Pike, C. R.; Ross, C. A.; Scalettar R. T.; Zimanyi, G. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array. Phys. Rev. B 2005, 71, 134407.CrossRefGoogle Scholar
  48. [48]
    García, J.; Vega, V.; Thomas, A.; Prida, V. M.; Nielsch, K. Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays. Nanomaterials 2018, 8, 548.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ester M. Palmero
    • 1
    • 3
    Email author
  • Miguel Méndez
    • 2
  • Silvia González
    • 2
  • Cristina Bran
    • 1
  • Víctor Vega
    • 2
  • Manuel Vázquez
    • 1
  • Víctor M. Prida
    • 2
  1. 1.Institute of Materials Science of Madrid (ICMM-CSIC)MadridSpain
  2. 2.Department of PhysicsUniversity of OviedoOviedoSpain
  3. 3.Division of Permanent Magnets and ApplicationsIMDEA NanoscienceMadridSpain

Personalised recommendations