Advertisement

Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles

  • Xiyue Zhu
  • Hongpan RongEmail author
  • Xiaobin Zhang
  • Qiumei Di
  • Huishan Shang
  • Bing Bai
  • Jiajia Liu
  • Jia Liu
  • Meng Xu
  • Wenxing Chen
  • Jiatao ZhangEmail author
Research Article
  • 43 Downloads

Abstract

Control of surface structure at the atomic level can effectively tune catalytic properties of nanomaterials. Tuning surface strain is an effective strategy for enhancing catalytic activity; however, the correlation studies between the surface strain with catalytic performance are scant because such mechanistic studies require the precise control of surface strain on catalysts. In this work, a simple strategy of precisely tuning compressive surface strain of atomic-layer Cu2O on Cu@Ag (AL-Cu2O/Cu@Ag) nanoparticles (NPs) is demonstrated. The AL-Cu2O is synthesized by structure evolution of Cu@Ag core-shell nanoparticles, and the precise thickness-control of AL-Cu2O is achieved by tuning the molar ratio of Cu/Ag of the starting material. Aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) and EELS elemental mapping characterization showed that the compressive surface strain of AL-Cu2O along the [111] and [200] directions can be precisely tuned from 6.5% to 1.6% and 6.6% to 4.7%, respectively, by changing the number of AL-Cu2O layer from 3 to 6. The as-prepared AL-Cu2O/Cu@Ag NPs exhibited excellent catalytic property in the synthesis of azobenzene from aniline, in which the strained 4-layers Cu2O (4.5% along the [111] direction, 6.1% along the [200] direction) exhibits the best catalytic performance. This work may be beneficial for the design and surface engineering of catalysts toward specific applications.

Keywords

compressive surface strain atomic-layer Cu2precise thickness-control catalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51631001, 21643003, 51872030, 51702016, and 51501010), Fundamental Research Funds for the Central Universities, Beijing Institute of Technology Research Fund Program for Young Scholars and ZDKT18-01 from State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). The characterization results were supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Supplementary material

12274_2019_2380_MOESM1_ESM.pdf (4.3 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.CrossRefGoogle Scholar
  2. [2]
    Liu, C.; Ma, Z.; Cui, M. Y.; Zhang, Z. Y.; Zhang, X.; Su, D.; Murray, C. B.; Wang, J. X.; Zhang, S. Favorable core/shell interface within Co2P/Pt nanorods for oxygen reduction electrocatalysis. Nano Lett. 2018, 18, 7870–7875.CrossRefGoogle Scholar
  3. [3]
    Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.CrossRefGoogle Scholar
  4. [4]
    Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.CrossRefGoogle Scholar
  5. [5]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  6. [6]
    Tang, C. Y.; Zhang, N.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 2019, 19, 1336–1342.CrossRefGoogle Scholar
  7. [7]
    Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.CrossRefGoogle Scholar
  8. [8]
    Wang, X. S.; Zhu, Y. H.; Vasileff, A.; Jiao, Y.; Chen, S. M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S. Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 1198–1204.CrossRefGoogle Scholar
  9. [9]
    Xue, Y. Y.; Ge, H.; Chen, Z.; Zhai, Y. B.; Zhang, J.; Sun, J. Q.; Abbas, M.; Lin, K.; Zhao, W. T.; Chen, J. G. Effect of strain on the performance of iron-based catalyst in Fischer-Tropsch synthesis. J. Catal. 2018, 358, 237–242.CrossRefGoogle Scholar
  10. [10]
    Zhang, E. H.; Ma, F. F.; Liu, J.; Sun, J. Y.; Chen, W. X.; Rong, H. P.; Zhu, X. Y.; Liu, J. J.; Xu, M.; Zhuang, Z. B. et al. Porous platinum-silver bimetallic alloys: Surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale 2018, 10, 21703–21711.CrossRefGoogle Scholar
  11. [11]
    Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739.CrossRefGoogle Scholar
  12. [12]
    Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, e1707301.CrossRefGoogle Scholar
  13. [13]
    Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.CrossRefGoogle Scholar
  14. [14]
    Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.CrossRefGoogle Scholar
  15. [15]
    He, J.; Shen, Y. L.; Yang, M. Z.; Zhang, H. X.; Deng, Q. B.; Ding, Y. The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. J. Catal. 2017, 350, 212–217.CrossRefGoogle Scholar
  16. [16]
    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  17. [17]
    Zhou, G. W.; Ji, H. H.; Bai, Y. H.; Quan, Z. Y.; Xu, X. H. Intrinsic exchange bias effect in strain-engineered single antiferromagnetic LaMnO3 films. Sci. China Mater. 2019, in press, DOI:  https://doi.org/10.1007/s40843-018-9387-0.Google Scholar
  18. [18]
    Wang, C. Y.; Sang, X. H.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 2017, 17, 5526–5532.CrossRefGoogle Scholar
  19. [19]
    Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.CrossRefGoogle Scholar
  20. [20]
    Biele, R.; Flores, E.; Ares, J. R.; Sanchez, C.; Ferrer, I. J.; Rubio-Bollinger, G.; Castellanos-Gomez, A.; D’Agosta, R. Strain-induced band gap engineering in layered TiS3. Nano Res. 2017, 11, 225–232.CrossRefGoogle Scholar
  21. [21]
    Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778–2782.CrossRefGoogle Scholar
  22. [22]
    Chen, W.; Li, L. L.; Peng, Q.; Li, Y. D. Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Res. 2012, 5, 320–326.CrossRefGoogle Scholar
  23. [23]
    Rice, K. P.; Walker, E. J. Jr.; Stoykovich, M. P.; Saunders, A. E. Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J. Phy. Chem. C 2011, 115, 1793–1799.CrossRefGoogle Scholar
  24. [24]
    Kong, L. N.; Chen, W.; Ma, D. K.; Yang, Y.; Liu, S. S.; Huang, S. M. Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J. Mater. Chem. 2012, 22, 719–724.CrossRefGoogle Scholar
  25. [25]
    Feng, Y. G.; Shao, Q.; Huang, B. L.; Zhang, J. B.; Huang, X. Q. Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. Nat. Sci. Rev. 2018, 5, 895–906.CrossRefGoogle Scholar
  26. [26]
    Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.CrossRefGoogle Scholar
  27. [27]
    Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, in press, DOI:  https://doi.org/10.1007/s12274-019-2345-4.Google Scholar
  28. [28]
    Muzikansky, A.; Nanikashvili, P.; Grinblat, J.; Zitoun, D. Ag dewetting in Cu@Ag monodisperse core-shell nanoparticles. J. Phys. Chem. C 2013, 117, 3093–3100.CrossRefGoogle Scholar
  29. [29]
    Osowiecki, W. T.; Ye, X. C.; Satish, P.; Bustillo, K. C.; Clark, E. L.; Alivisatos, A. P. Tailoring morphology of Cu-Ag nanocrescents and core-shell nanocrystals guided by a thermodynamic model. J. Am. Chem. Soc. 2018, 140, 8569–8577.CrossRefGoogle Scholar
  30. [30]
    Liu, S. J.; Sun, Z. H.; Liu, Q. H.; Wu, L. H.; Huang, Y. Y.; Yao, T.; Zhang, J.; Hu, T. D.; Ge, M. R.; Hu, F. C. et al. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 2014, 8, 1886–1892.CrossRefGoogle Scholar
  31. [31]
    Masaharu, T.; Sachie, H.; Yoshiyuki, S.; Misao, H. Preparation of Cu@Ag core-shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem. Lett. 2009, 38, 518–519.CrossRefGoogle Scholar
  32. [32]
    Pellarin, M.; Issa, I.; Langlois, C.; Lebeault, M. A.; Ramade, J.; Lermé, J.; Broyer, M.; Cottancin, E. Plasmon spectroscopy and chemical structure of small bimetallic Cu(1-x)Agx Clusters. J. Phy. Chem. C 2015, 119, 5002–5012.CrossRefGoogle Scholar
  33. [33]
    Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.CrossRefGoogle Scholar
  34. [34]
    Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91–95.CrossRefGoogle Scholar
  35. [35]
    Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.CrossRefGoogle Scholar
  36. [36]
    Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.CrossRefGoogle Scholar
  37. [37]
    Fu, L.; Shang, C. Q.; Ma, J.; Zhang, C. J.; Zang, X.; Chai, J. C.; Li, J. D.; Cui, G. L. Cu2GeS3 derived ultrafine nanoparticles as high-performance anode for sodium ion battery. Sci. China Mater. 2018, 61, 1177–1184.CrossRefGoogle Scholar
  38. [38]
    Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O’Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.CrossRefGoogle Scholar
  39. [39]
    Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.CrossRefGoogle Scholar
  40. [40]
    Cai, W. P.; Zhong, H. C.; Zhang, L. D. Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host. J. Appl. Phys. 1998, 83, 1705–1710.CrossRefGoogle Scholar
  41. [41]
    Erasmus, E.; Thüne, P. C.; Verhoeven, M. W. G. M.; Niemantsverdriet, J. W.; Swarts, J. C. A new approach to silver-catalysed aerobic oxidation of octadecanol: Probing catalysts utilising a flat, two-dimensional silicon-based model support system. Catal. Commun. 2012, 27, 193–199.CrossRefGoogle Scholar
  42. [42]
    Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.CrossRefGoogle Scholar
  43. [43]
    Stewart, I. E.; Ye., S. R.; Chen, Z. F.; Flowers, P. F.; Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794.CrossRefGoogle Scholar
  44. [44]
    Dai, Y. T.; Li, C.; Shen, Y. B.; Lim, T; Xu, J.; Li, Y. W.; Niemantsverdriet, H.; Besenbacher, F.; Lock, N.; Su, R. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nat. Commun. 2018, 9, 60.CrossRefGoogle Scholar
  45. [45]
    Grirrane, A.; Corma, C.; García, H. Gold-catalyzed synthesis of aromatic Azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.CrossRefGoogle Scholar
  46. [46]
    Dutta, B.; Biswas, S.; Sharma, V.; Savage, N. O.; Alpay, S. P.; Suib, S. L. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds. Angew. Chem. 2016, 128, 2211–2215.CrossRefGoogle Scholar
  47. [47]
    Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.CrossRefGoogle Scholar
  48. [48]
    Guo, X. N.; Hao, C. H.; Jin, G. Q.; Zhu, H. Y.; Guo, X. Y. Copper Nanoparticles on Graphene Support: An efficient photocatalyst for coupling of nitroaromatics in visible light. Angew. Chem., Int. Ed. 2014, 53, 1973–1977.CrossRefGoogle Scholar
  49. [49]
    Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiyue Zhu
    • 1
  • Hongpan Rong
    • 1
    Email author
  • Xiaobin Zhang
    • 2
  • Qiumei Di
    • 1
  • Huishan Shang
    • 1
  • Bing Bai
    • 1
  • Jiajia Liu
    • 1
  • Jia Liu
    • 1
  • Meng Xu
    • 1
  • Wenxing Chen
    • 1
  • Jiatao Zhang
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Center for Nano Materials and TechnologyJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations