Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere

  • Haixia Zhong
  • Fanlu Meng
  • Qi Zhang
  • Kaihua Liu
  • Xinbo ZhangEmail author
Research Article


Carbon dioxide reduction (CO2RR) has become a promising way to address the energy and environmental crisis, of which the fundamental development of the optimal electrocatalysts is the crucial part. Herein, we develop Fe and N doping porous carbon nematosphere (FeNPCN) as an excellent CO2RR electrocatalyst in aqueous electrolyte. Featuring with the high conductivity, pore structure and abundant Fe and N doping, FeNPCN exhibits high catalytic activity with a high faradaic selectivity of CO (94%) and long-term durability. Moreover, the ratio of CO and H2 can be changed by the applied potential for the different syngas related industry. Density functional theory (DFT) calculation results also reveal that the excellent catalytic activity is likely attributed to C and N hybrid coordination with atomic Fe.


carbon dioxide reduction electrocatalysis porous carbon carbon monoxide metal/nitrogen doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported the National Natural Science Foundation of China (Nos. 21725103, 51522101, 51471075, 51631004, 51472232, 51522202 and 21771013), and Program for JLU Science and Technology Innovative Research Team (No. 2017TD-09).

Supplementary material

12274_2019_2339_MOESM1_ESM.pdf (2.6 mb)
Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere


  1. [1]
    Hu, X.-M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem., Int. Ed. 2017, 56, 6468–6472.CrossRefGoogle Scholar
  2. [2]
    Lum, Y. W.; Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem., Int. Ed. 2018, 57, 551–554.CrossRefGoogle Scholar
  3. [3]
    Olu, P.-Y.; Li, Q.; Krischer, K. The true fate of pyridinium in the reportedly pyridinium-catalyzed carbon dioxide electroreduction on platinum. Angew. Chem., Int. Ed. 2018, 57, 14769–14772.CrossRefGoogle Scholar
  4. [4]
    He, J. F.; Dettelbach, K. E.; Salvatore, D. A.; Li, T. F.; Berlinguette, C. P. High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2017, 56, 6068–6072.CrossRefGoogle Scholar
  5. [5]
    Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.CrossRefGoogle Scholar
  6. [6]
    Li, F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505–509.CrossRefGoogle Scholar
  7. [7]
    Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.CrossRefGoogle Scholar
  8. [8]
    Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.CrossRefGoogle Scholar
  9. [9]
    Bi, W. T.; Li, X. G.; You, R.; Chen, M. L.; Yuan, R. L.; Huang, W. X.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 2018, 30, 1706617.CrossRefGoogle Scholar
  10. [10]
    Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.CrossRefGoogle Scholar
  11. [11]
    Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.CrossRefGoogle Scholar
  12. [12]
    Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X. C.; Yu, A. B.; Wu, K. C. W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898.CrossRefGoogle Scholar
  13. [13]
    Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.CrossRefGoogle Scholar
  14. [14]
    Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem., Int. Ed. 2017, 56, 10840–10844.CrossRefGoogle Scholar
  15. [15]
    Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.CrossRefGoogle Scholar
  16. [16]
    Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.CrossRefGoogle Scholar
  17. [17]
    Zhang, A.; He, R.; Li, H. P.; Chen, Y. J.; Kong, T. Y.; Li, K.; Ju, H. X.; Zhu, J. F.; Zhu, W. G.; Zeng, J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 10954–10958.CrossRefGoogle Scholar
  18. [18]
    Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.CrossRefGoogle Scholar
  19. [19]
    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.CrossRefGoogle Scholar
  20. [20]
    Chen, L. H.; Han, J. H.; Ito, Y.; Fujita, T.; Huang, G.; Hu, K. L.; Hirata, A.; Watanabe, K.; Chen, M. W. Heavily doped and highly conductive hierarchical nanoporous graphene for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2018, 57, 13302–13307.CrossRefGoogle Scholar
  21. [21]
    Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed. 2018, 57, 14149–14153.CrossRefGoogle Scholar
  22. [22]
    Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819.CrossRefGoogle Scholar
  23. [23]
    Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.CrossRefGoogle Scholar
  24. [24]
    Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.CrossRefGoogle Scholar
  25. [25]
    Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water. Angew. Chem., Int. Ed. 2018, 57, 9684–9688.CrossRefGoogle Scholar
  26. [26]
    Yang, F., Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303–12307.CrossRefGoogle Scholar
  27. [27]
    Wang, Y. S.; Chen, J. X.; Wang, G. X.; Li, Y.; Wen, Z. H. Perfluorinated covalent triazine framework derived hybrids for the highly selective electroconversion of carbon dioxide into methane. Angew. Chem., Int. Ed. 2018, 57, 13120–13124.CrossRefGoogle Scholar
  28. [28]
    Fan, H. S.; Yu, H.; Zhang, Y. F.; Zheng, Y.; Luo, Y. B.; Dai, Z. F.; Li, B.; Zong, Y.; Yan, Q. Y. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 12566–12570.CrossRefGoogle Scholar
  29. [29]
    Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.CrossRefGoogle Scholar
  30. [30]
    Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.CrossRefGoogle Scholar
  31. [31]
    Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.CrossRefGoogle Scholar
  32. [32]
    Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.CrossRefGoogle Scholar
  33. [33]
    Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.CrossRefGoogle Scholar
  34. [34]
    Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.CrossRefGoogle Scholar
  35. [35]
    Yang, H. B.; Hung, S.-F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H.-Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.CrossRefGoogle Scholar
  36. [36]
    Varela, A. S.; Sahraie, N. R.; Steinberg, J.; Ju, W.; Oh, H.-S.; Strasser, P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem., Int. Ed. 2015, 54, 10758–10762.CrossRefGoogle Scholar
  37. [37]
    Qu, K. G.; Zheng, Y.; Jiao, Y.; Zhang, X. X.; Dai, S.; Qiao, S.-Z. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1602068.CrossRefGoogle Scholar
  38. [38]
    Zhao, Y.; Wang, C. Y.; Liu, Y. Q.; MacFarlane, D. R.; Wallace, G. G. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1801400.CrossRefGoogle Scholar
  39. [39]
    Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 57, 12790–12794.CrossRefGoogle Scholar
  40. [40]
    He, P. L.; Yu, X.-Y.; Lou, X. W. D. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.CrossRefGoogle Scholar
  41. [41]
    Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796–800.CrossRefGoogle Scholar
  42. [42]
    Zhong, H.-X.; Wang, J.; Zhang, Y.-W.; Xu, W.-L.; Xing, W.; Xu, D.; Zhang, Y.-F.; Zhang, X.-B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.CrossRefGoogle Scholar
  43. [43]
    Ghausi, M. A.; Xie, J. F.; Li, Q. H.; Wang, X. Y.; Yang, R.; Wu, M. X.; Wang, Y. B.; Dai, L. M. CO2 overall splitting by a bifunctional metal-free electrocatalyst. Angew. Chem., Int. Ed. 2018, 57, 13135–13139.CrossRefGoogle Scholar
  44. [44]
    Wang, J.; Li, K.; Zhong, H. X.; Xu, D.; Wang, Z. L.; Jiang, Z.; Wu, Z. J.; Zhang, X. B. Synergistic effect between metal-nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem., Int. Ed. 2015, 54, 10530–10534.CrossRefGoogle Scholar
  45. [45]
    Wang, H.; Jia, J.; Song, P. F.; Wang, Q.; Li, D. B.; Min, S. X.; Qian, C. X.; Wang, L.; Li, Y. F.; Ma, C. et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery. Angew. Chem., Int. Ed. 2017, 56, 7847–7852.CrossRefGoogle Scholar
  46. [46]
    Li, Z. H.; Shao, M. F.; Zhou, L.; Zhang, R. K.; Zhang, C.; Wei, M.; Evans, D. G.; Duan, X. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 2016, 28, 2337–2344.CrossRefGoogle Scholar
  47. [47]
    Liu, S. H.; Wang, Z. Y.; Zhou, S.; Yu, F. J.; Yu, M. Z.; Chiang, C.-Y.; Zhou, W. Z.; Zhao, J. J.; Qiu, J. S. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.CrossRefGoogle Scholar
  48. [48]
    Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J. S.; Zou, R. Q.; Zhao, Y. L. A Triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 2016, 138, 2142–2145.CrossRefGoogle Scholar
  49. [49]
    Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haixia Zhong
    • 1
  • Fanlu Meng
    • 1
    • 2
  • Qi Zhang
    • 1
  • Kaihua Liu
    • 1
    • 2
  • Xinbo Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations