Advertisement

Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications

  • Xiaoqiang Xiang
  • Hang LinEmail author
  • Renfu Li
  • Yao Cheng
  • Qingming Huang
  • Ju Xu
  • Congyong Wang
  • Xueyuan Chen
  • Yuansheng WangEmail author
Research Article
  • 63 Downloads

Abstract

In this work, we discovered an unexpected mechanoluminescence (ML) phenomena occurring when transforming amorphous into crystalline, due to the stress-induced precipitation of CsPbBr3 perovskite nanocrystals on glass surface. It is revealed that, unlike the conventional thermal-induced phase transformation mechanism, the breakage of bonding of glass network provides the energy for nucleation and growth, and the shear stress avoids the long-range migration of structural units for crystallization. Such unique ML phenomenon enables the visualization of dynamical force that is inaccessible by common strategy, and so, opens up some novel applications, such as the pressuresensitive “glassy pencil” to learn people’s writing habits, and the Pb2+-detection with good sensitivity and selectivity. These findings not only demonstrate an effective route for the preparation of perovskite materials in a green, time-saving, low cost, and scalable way, enrich the knowledge of glass crystallization mechanism, but also exploit a useful avenue to quantitatively visualize the dynamical force.

Keywords

perovskite nanocrystals CsPbBr3 mechanoluminescence glass ceramics nanocrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11674318, 11774346, 51872288, and 51472242), the National Key R&D Program of China (No. 2016YFB0701003) and the Chunmiao Project of the Haixi Institute of the Chinese Academy of Sciences (No. CMZX-2017-002).

Supplementary material

Supplementary material, approximately 2.43 MB.

12274_2019_2338_MOESM2_ESM.avi (7 mb)
Supplementary material, approximately 7.00 MB.
12274_2019_2338_MOESM3_ESM.avi (3.4 mb)
Supplementary material, approximately 3.42 MB.

Supplementary material, approximately 15.5 MB.

12274_2019_2338_MOESM5_ESM.pdf (3.4 mb)
Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications

References

  1. [1]
    Karpukhina, N.; Hill, R. G.; Law, R. V. Crystallisation in oxide glasses-a tutorial review. Chem. Soc. Rev. 2014, 43, 2174–2186.CrossRefGoogle Scholar
  2. [2]
    Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156–175.CrossRefGoogle Scholar
  3. [3]
    Fedorov, P. P.; Luginina, A. A.; Popov, A. I. Transparent oxyfluoride glass ceramics. J. Fluorine Chem. 2015, 172, 22–50.CrossRefGoogle Scholar
  4. [4]
    Fokin, V. M.; Zanotto, E. D.; Yuritsyn, N. S.; Schmelzer, J. W. P. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non-Cryst. Solids 2006, 352, 2681–2714.CrossRefGoogle Scholar
  5. [5]
    Liu, X. F.; Zhou, J. J.; Zhou, S. F.; Yue, Y. Z.; Qiu, J. R. Transparent glassceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96.CrossRefGoogle Scholar
  6. [6]
    Zhang, R.; Lin, H.; Yu, Y. L.; Chen, D. Q.; Xu, J.; Wang, Y. S. A newgeneration color converter for high-power white LED: Transparent Ce3+: YAG phosphor-in-glass. Laser Photonics Rev. 2014, 8, 158–164.CrossRefGoogle Scholar
  7. [7]
    Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326.CrossRefGoogle Scholar
  8. [8]
    Zhou, S. F.; Zheng, B. B.; Shimotsuma, Y.; Lu, Y. H.; Guo, Q. B.; Nishi, M.; Shimizu, M.; Miura, K.; Hirao, K.; Qiu, J. R. Heterogeneous-surfacemediated crystallization control. NPG Asia Mater. 2016, 8, e245.CrossRefGoogle Scholar
  9. [9]
    Xu, X. H.; Zhang, W. F.; Yang, D. C.; Lu, W.; Qiu, J. B.; Yu, S. F. Phononassisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics. Adv. Mater. 2016, 28, 8045–8050.CrossRefGoogle Scholar
  10. [10]
    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.; Rodríguez, V. D. Novel sol-gel nano-glass-ceramics comprising Ln3+- doped YF3 nanocrystals: Structure and high efficient UV up-conversion. Adv. Funct. Mater. 2011, 21, 3136–3142.CrossRefGoogle Scholar
  11. [11]
    Calvez, L.; Ma, H. L.; Lucas, J.; Zhang, X. H. Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR. Adv. Mater. 2007, 19, 129–132.CrossRefGoogle Scholar
  12. [12]
    Zhou, S. F.; Jiang, N.; Miura, K.; Tanabe, S.; Shimizu, M.; Sakakura, M.; Shimotsuma, Y.; Nishi, M.; Qiu, J. R.; Hirao, K. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. J. Am. Chem. Soc. 2010, 132, 17945–17952.CrossRefGoogle Scholar
  13. [13]
    Rosenflanz, A.; Frey, M.; Endres, B.; Anderson, T.; Richards, E.; Schardt, C. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 2004, 430, 761–764.CrossRefGoogle Scholar
  14. [14]
    Lin, H.; Hu, T.; Cheng, Y.; Chen, M. X.; Wang, Y. S. Glass ceramic phosphors: Towards long-lifetime high-power white light-emitting-diode applications-a review. Laser Photonics Rev. 2018, 12, 1700344.CrossRefGoogle Scholar
  15. [15]
    Xiao, Z. H.; Sun, X. Y.; Li, X. Y.; Wang, Y. Q.; Wang, Z. Q.; Zhang, B. W.; Li, X. L.; Shen, Z. X.; Kong, L. B.; Huang, Y. Z. Phase transformation of GeO2 glass to nanocrystals under ambient condition. Nano Lett. 2018, 18, 3290–3296.CrossRefGoogle Scholar
  16. [16]
    Sagara, Y., Mutai, T., Yoshikawa, I.; Araki, K. Material design for piezochromic luminescence: Hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc. 2007, 129, 1520–1521.CrossRefGoogle Scholar
  17. [17]
    Sagara, Y.; Kato, T. Stimuli-responsive luminescent liquid crystals: Change of photoluminescent colors triggered by a shear-Induced phase transition. Angew. Chem., Int. Ed. 2008, 47, 5175–5178.CrossRefGoogle Scholar
  18. [18]
    Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, N.; Sato, H.; Seki, T. Mechanical stimulation and solid seeding trigger single-crystal-to-singlecrystal molecular domino transformations. Nat. Commun. 2013, 4, 2009.CrossRefGoogle Scholar
  19. [19]
    Nagura, K.; Saito, S.; Yusa, H.; Yamawaki, H.; Fujihisa, H.; Sato, H.; Shimoikeda, Y.; Yamaguchi, S. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 2013, 135, 10322–10325.CrossRefGoogle Scholar
  20. [20]
    Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68–72.CrossRefGoogle Scholar
  21. [21]
    Lee, C. K.; Davis, D. A.; White, S. R.; Moore, J. S.; Sottos, N. R.; Braun, P. V. Force-induced redistribution of a chemical equilibrium. J. Am. Chem. Soc. 2010, 132, 16107–16111.CrossRefGoogle Scholar
  22. [22]
    Jeong, S. M.; Song, S.; Joo, K. I.; Kim, J.; Hwang, S. H.; Jeong, J.; Kim, H. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 2014, 7, 3338–3346.CrossRefGoogle Scholar
  23. [23]
    Chandra, V. K.; Chandra, B. P.; Jha, P. Strong luminescence induced by elastic deformation of piezoelectric crystals. Appl. Phys. Lett. 2013, 102, 241105.CrossRefGoogle Scholar
  24. [24]
    Timilsina, S.; Lee, K. H.; Jang, I. Y.; Kim, J. S. Mechanoluminescent determination of the mode I stress intensity factor in SrAl2O4:Eu2+, Dy3+. Acta Mater. 2013, 61, 7197–7206.CrossRefGoogle Scholar
  25. [25]
    Peng, D. F.; Chen, B.; Wan, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209–1215.CrossRefGoogle Scholar
  26. [26]
    Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414–2416.CrossRefGoogle Scholar
  27. [27]
    Xie, Y. J.; Li, Z. Triboluminescence: Recalling interest and new aspects. Chem 2018, 4, 943–971.CrossRefGoogle Scholar
  28. [28]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  29. [29]
    Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.CrossRefGoogle Scholar
  30. [30]
    Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.CrossRefGoogle Scholar
  31. [31]
    He, X. H.; Qiu, Y. C.; Yang S. H. Fully-inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials. Adv. Mater. 2017, 29, 1700775.CrossRefGoogle Scholar
  32. [32]
    Quan, L. N.; de Arquer, F. P. G.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996.CrossRefGoogle Scholar
  33. [33]
    Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.CrossRefGoogle Scholar
  34. [34]
    Ai, B.; Liu, C.; Wang, J.; Xie, J.; Han, J. J.; Zhao, X. J. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J. Am. Ceram. Soc. 2016, 99, 2875–2877.CrossRefGoogle Scholar
  35. [35]
    Ravi-Chandar, K.; Knauss, W. G. An experimental investigation into dynamic fracture: II. Microstructural aspects. Int. J. Fracture 1984, 26, 65–80.CrossRefGoogle Scholar
  36. [36]
    Milman, V. Y.; Stelmashenko, N. A.; Blumenfeld, R. Fracture surfaces: A critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements. Prog. Mater. Sci. 1994, 38, 425–474.CrossRefGoogle Scholar
  37. [37]
    Mecholsky, J. J.; Gonzalez, A. C.; Freiman, S. W. Fractographic analysis of delayed failure in soda-lime glass. J. Am. Ceram. Soc. 1979, 62, 577–580.CrossRefGoogle Scholar
  38. [38]
    Freiman S. The fracture of glass: Past, present, and future. Int. J. Appl. Glass Sci. 2012, 3, 89–106.Google Scholar
  39. [39]
    Mecholsky, J. J., Jr.; Freiman, S. W. Relationship between fractal geometry and fractography. J. Am. Ceram. Soc. 1991, 74, 3136–3138.CrossRefGoogle Scholar
  40. [40]
    Cha, J. H.; Han, J. H.; Yin, W. P.; Park, C.; Park, Y.; Ahn, T. K.; Cho, J. H.; Jung, D. Y. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 2017, 8, 565–570.CrossRefGoogle Scholar
  41. [41]
    Hayashi, A.; Konishi, T.; Tadanaga, K.; Minami, T.; Tatsumisago, M. Preparation and characterization of SnO-P2O5 glasses as anode materials for lithium secondary batteries. J. Non-Cryst. Solids 2004, 345–346, 478–483.CrossRefGoogle Scholar
  42. [42]
    Zhao, J. J.; Ma, R. H.; Chen, X. K.; Kang, B. B.; Qiao, X. S.; Du, J. C.; Fan, X. P.; Ross, U.; Roiland, C.; Lotnyk, A. et al. From phase separation to nanocrystallization in fluorosilicate glasses: Structural design of highly luminescent glass-ceramics. J. Phys. Chem. C 2016, 120, 17726–17732.CrossRefGoogle Scholar
  43. [43]
    Lin, C. G.; Bocker, C.; Rüssel, C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation. Nano Lett. 2015, 15, 6764–6769.CrossRefGoogle Scholar
  44. [44]
    Bhattacharyya, S.; Bocker, C.; Heil, T.; Jinschek, J. R.; Höche, T.; Rüssel, C.; Kohl, H. Experimental evidence of self-limited growth of nanocrystals in glass. Nano Lett. 2009, 9, 2493–2496.CrossRefGoogle Scholar
  45. [45]
    Herrmann, A.; Tylkowski, M.; Bocker, C.; Rüssel, C. Cubic and hexagonal NaGdF4 crystals precipitated from an aluminosilicate glass: Preparation and luminescence properties. Chem. Mater. 2013, 25, 2878–2884.CrossRefGoogle Scholar
  46. [46]
    Jiang, Z. H.; Zhang, Q. Y. The structure of glass: A phase equilibrium diagram approach. Prog. Mater. Sci. 2014, 61, 144–215.CrossRefGoogle Scholar
  47. [47]
    Bocker, C.; Rüssel, C.; Avramov, I. Transparent nano crystalline glass-ceramics by interface controlled crystallization. Int. J. Appl. Glass Sci. 2013, 4, 174–181.CrossRefGoogle Scholar
  48. [48]
    de Pablos-Martín, A.; Mather, G. C.; Muñoz, F.; Bhattacharyya, S.; Höche, T.; Jinschek, J. R.; Heil, T.; Durán, A.; Pascual, M. J. Design of oxy-fluoride glassceramics containing NaLaF4 nano-crystals. J. Non-Cryst. Solids 2010, 356, 3071–3079.CrossRefGoogle Scholar
  49. [49]
    Li, T.; Dong, S. J.; Wang, E. K. A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. J. Am. Chem. Soc. 2010, 132, 13156–13157.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoqiang Xiang
    • 1
    • 2
  • Hang Lin
    • 1
    Email author
  • Renfu Li
    • 1
  • Yao Cheng
    • 1
  • Qingming Huang
    • 3
  • Ju Xu
    • 1
  • Congyong Wang
    • 1
  • Xueyuan Chen
    • 1
  • Yuansheng Wang
    • 1
    Email author
  1. 1.CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  2. 2.College of Chemistry and Materials ScienceFujian Normal UniversityFuzhouChina
  3. 3.Instrumentation Analysis and Research CenterFuzhou UniversityFuzhouChina

Personalised recommendations