Advertisement

Nano Research

, Volume 12, Issue 4, pp 919–924 | Cite as

Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3

  • Ya Zhang
  • Huitong Du
  • Yongjun Ma
  • Lei Ji
  • Haoran Guo
  • Ziqi Tian
  • Hongyu Chen
  • Hong Huang
  • Guanwei Cui
  • Abdullah M. Asiri
  • Fengli QuEmail author
  • Liang ChenEmail author
  • Xuping SunEmail author
Research Article
  • 214 Downloads

Abstract

Industrial production of NH3 from N2 and H2 significantly relies on Haber–Bosch process, which suffers from high energy consume and CO2 emission. As a sustainable and environmentally-benign alternative process, electrochemical artificial N2 fixation at ambient conditions, however, is highly required efficient electrocatalysts. In this study, we demonstrate that hexagonal boron nitride nanosheet (h-BNNS) is able to electrochemically catalyze N2 to NH3. In acidic solution, h-BNNS catalyst attains a high NH3 formation rate of 22.4 μg·h–1·mg–1cat. and a high Faradic efficiency of 4.7% at–0.75 V vs. reversible hydrogen electrode, with excellent stability and durability. Density functional theory calculations reveal that unsaturated boron at the edge site can activate inert N2 molecule and significantly reduce the energy barrier for NH3 formation.

Keywords

boron nitride nanosheet N2 reduction reaction NH3 electrosynthesis ambient conditions density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575137, 21775089, and 21375076), the Key Research and Development Program of Shandong Province (No. 2015GSF121031) and the Natural Science Foundation Projects of Shandong Province (Nos. ZR2017JL010, ZR2017QB008, and ZR2017LEE006).

Supplementary material

12274_2019_2323_MOESM1_ESM.pdf (3.5 mb)
Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3

References

  1. [1]
    Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.CrossRefGoogle Scholar
  2. [2]
    Schlögl, R. Catalytic synthesis of ammonia—A “never–ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.CrossRefGoogle Scholar
  3. [3]
    Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.CrossRefGoogle Scholar
  4. [4]
    Vegge, T.; Sørensen, R. Z.; Klerke, A.; Hummelshøj, J. S.; Johannessen, T.; Nørskov, J. K.; Christensen, C. H. Indirect hydrogen storage in metal ammines. In Solid–State Hydrogen Storage. Walker, G., Ed.; Woodhead Publishing Limited: Cambridge, 2008; pp 533–564.Google Scholar
  5. [5]
    Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal–free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.CrossRefGoogle Scholar
  6. [6]
    Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 1997, 275, 1445–1447.CrossRefGoogle Scholar
  7. [7]
    Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis—The selectivity challenge. ACS Catal. 2017, 7, 706–709.CrossRefGoogle Scholar
  8. [8]
    Jennings, J. R. Catalytic Ammonia Synthesis; Plenum: New York, 1991.CrossRefGoogle Scholar
  9. [9]
    Dybkjaer, I. Ammonia production processes. In Ammonia: Catalysis and Manufacture. Nielsen, A., Ed.; Springer: Berlin, Heidelberg, 1995; pp 199–327.Google Scholar
  10. [10]
    Chan, M. K.; Kim, J.; Rees, D. C. The nitrogenase FeMo–cofactor and P–cluster pair: 2.2 a resolution structures. Science 1993, 260, 792–794.CrossRefGoogle Scholar
  11. [11]
    Burgess, B. K.; Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3011.CrossRefGoogle Scholar
  12. [12]
    Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C.; King, P. W. Light–driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.CrossRefGoogle Scholar
  13. [13]
    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.CrossRefGoogle Scholar
  14. [14]
    Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.CrossRefGoogle Scholar
  15. [15]
    Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.CrossRefGoogle Scholar
  16. [16]
    Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.CrossRefGoogle Scholar
  17. [17]
    Nazemi, M.; Panikkanvalappil, S. R.; El–Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.CrossRefGoogle Scholar
  18. [18]
    Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.Google Scholar
  19. [19]
    Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.Google Scholar
  20. [20]
    Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.CrossRefGoogle Scholar
  21. [21]
    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon–nanotube–based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.CrossRefGoogle Scholar
  22. [22]
    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room–temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three–phase reactor. ACS Sustainable Chem. Eng. 2017, 5, 7393–7400.CrossRefGoogle Scholar
  23. [23]
    Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)–oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.CrossRefGoogle Scholar
  24. [24]
    Lv, C.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble–metal–free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.CrossRefGoogle Scholar
  25. [25]
    Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 Electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.CrossRefGoogle Scholar
  26. [26]
    Zhang, R.; Zhang, Y.; Ren, X.; Cui, G. W.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. High–efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545–9549.CrossRefGoogle Scholar
  27. [27]
    Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L.; Tang, B.; Sun, X. P. High–performance artificial nitrogen fixation at ambient conditions using a metal–free electrocatalyst. Nat. Commun. 2018, 9, 3485.CrossRefGoogle Scholar
  28. [28]
    Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high–performance electrocatalyst. Nano Energy 2018, 52, 264–270.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High–performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.CrossRefGoogle Scholar
  30. [30]
    Zhang, L.; Ji, X. Q.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions. ACS Sustainable Chem. Eng. 2018, 6, 9550–9554.CrossRefGoogle Scholar
  31. [31]
    Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Boosted electrocatalytic N2 reduction to NH3 by defect–rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.CrossRefGoogle Scholar
  32. [32]
    Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y. L.; Guo, H. R.; Li, Y. H.; Gao, P.; Shi, X. F.; Li, B. H.; Tang, B.; Sun, X. P. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2018, 5, 1801182.Google Scholar
  33. [33]
    Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N–doped porous carbon. ACS Catal. 2018, 8, 1186–1191.CrossRefGoogle Scholar
  34. [34]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  35. [35]
    Mirehi, A.; Heidari–Semiromi, E. Effects of the interplay between electronelectron interaction and intrinsic spin–orbit interaction on the indirect RKKY coupling in graphene nanoflakes. Phys. Chem. Chem. Phys. 2019, 21, 1324–1335.CrossRefGoogle Scholar
  36. [36]
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two–dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar
  37. [37]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene–like twodimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  38. [38]
    Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically–thin two–dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.CrossRefGoogle Scholar
  39. [39]
    Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Two–dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701.CrossRefGoogle Scholar
  40. [40]
    Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two–dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.CrossRefGoogle Scholar
  41. [41]
    Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two–dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.CrossRefGoogle Scholar
  42. [42]
    Zhang, K. L.; Feng, Y. L.; Wang, F.; Yang, Z. C.; Wang, J. Two dimensional hexagonal boron nitride (2D–hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992–12022.CrossRefGoogle Scholar
  43. [43]
    Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.CrossRefGoogle Scholar
  44. [44]
    Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.CrossRefGoogle Scholar
  45. [45]
    Zobelli, A.; Gloter, A.; Ewels, C. P.; Seifert, G.; Colliex, C. Electron knock–on cross section of carbon and boron nitride nanotubes. Phys. Rev. B 2007, 75, 245402.CrossRefGoogle Scholar
  46. [46]
    Zhang, Z. H.; Guo, W. L. Energy–gap modulation of BN ribbons by transverse electric fields: First–principles calculations. Phys. Rev. B 2008, 77, 075403.CrossRefGoogle Scholar
  47. [47]
    Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.CrossRefGoogle Scholar
  48. [48]
    Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.CrossRefGoogle Scholar
  49. [49]
    Wang, Z. F.; Tang, Z. J.; Xue, Q.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Jiang, H. B.; Fu, C. X.; Zhi, C. Y. Fabrication of boron nitride nanosheets by exfoliation. Chem. Rec. 2016, 16, 1204–1215.CrossRefGoogle Scholar
  50. [50]
    Bao, J.; Jeppson, K.; Edwards, M.; Fu, Y. F.; Ye, L. L.; Lu, X. Z.; Liu, J. Synthesis and applications of two–dimensional hexagonal boron nitride in electronics manufacturing. Electron. Mater. Lett. 2016, 12, 1–16.CrossRefGoogle Scholar
  51. [51]
    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild–Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.CrossRefGoogle Scholar
  52. [52]
    Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.CrossRefGoogle Scholar
  53. [53]
    Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.CrossRefGoogle Scholar
  54. [54]
    Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo–illuminated diamond as a solid–state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.CrossRefGoogle Scholar
  55. [55]
    Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.CrossRefGoogle Scholar
  56. [56]
    Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First–principles simulation: Ideas, illustrations and the castep code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.Google Scholar
  57. [57]
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossRefGoogle Scholar
  58. [58]
    Blöchl, P. E. Projector augmented–wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  59. [59]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT–D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.CrossRefGoogle Scholar
  60. [60]
    Thangasamy, P.; Sathish, M. Supercritical fluid processing: A rapid, one–pot exfoliation process for the production of surfactant–free hexagonal boron nitride nanosheets. CrystEngComm 2015, 17, 5895–5899.CrossRefGoogle Scholar
  61. [61]
    Sun, W. L.; Meng, Y.; Fu, Q. R.; Wang, F.; Wang, G. J.; Gao, W. H.; Huang, X. C.; Lu, F. S. High–yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces 2016, 8, 9881–9888.CrossRefGoogle Scholar
  62. [62]
    Zhong, B.; Wu, Y.; Huang, X. X.; Wen, G. W.; Yu, H. M.; Zhang, T. Hollow BN microspheres constructed by nanoplates: Synthesis, growth mechanism and cathodoluminescence property. CrystEngComm 2011, 13, 819–826.CrossRefGoogle Scholar
  63. [63]
    Xu, Z. G.; Tian, H.; Khanaki, A.; Zheng, R. J.; Suja, M.; Liu, J. L. Largearea growth of multi–layer hexagonal boron nitride on polished cobalt foils by plasma–assisted molecular beam epitaxy. Sci. Rep. 2017, 7, 43100.CrossRefGoogle Scholar
  64. [64]
    Légaré, M. A.; Bélanger–Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.CrossRefGoogle Scholar
  65. [65]
    Zhou, F. L.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell–Worth, C.; Sun, C. H.; Zhang, X. Y.; MacFarlane, D. R. Electro–synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10, 2516–2520.CrossRefGoogle Scholar
  66. [66]
    Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S–doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2018, 2, 1800251.CrossRefGoogle Scholar
  67. [67]
    Kong, J. M.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J.; Park, H. S. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ–Fe2O3 catalyst. ACS Sustainable Chem. Eng. 2017, 5, 10986–10995.CrossRefGoogle Scholar
  68. [68]
    Ren, X; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H.; Tang, B.; Sun, X. P. High–performance N2–to–NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2019, 5, 116–121.CrossRefGoogle Scholar
  69. [69]
    Guo, C. X.; Zhang, L. Y.; Miao, J. W.; Zhang, J. T.; Li, C. M. DNAfunctionalized graphene to guide growth of highly active Pd nanocrystals as efficient electrocatalyst for direct formic acid fuel cells. Adv. Energy Mater. 2013, 3, 167–171.CrossRefGoogle Scholar
  70. [70]
    Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild–Pedersen, F.; Vegge, T.; Jónssonac, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro–catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.CrossRefGoogle Scholar
  71. [71]
    Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ya Zhang
    • 1
  • Huitong Du
    • 2
  • Yongjun Ma
    • 3
  • Lei Ji
    • 1
  • Haoran Guo
    • 4
  • Ziqi Tian
    • 4
  • Hongyu Chen
    • 1
  • Hong Huang
    • 1
  • Guanwei Cui
    • 5
  • Abdullah M. Asiri
    • 6
  • Fengli Qu
    • 3
    Email author
  • Liang Chen
    • 4
    Email author
  • Xuping Sun
    • 1
    Email author
  1. 1.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.College of Chemistry and Chemical EngineeringQufu Normal UniversityQufuChina
  3. 3.Analytical and Test CenterSouthwest University of Science and TechnologyMianyangChina
  4. 4.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  5. 5.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina
  6. 6.Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations