Stimuli-responsive nitric oxide generator for light-triggered synergistic cancer photothermal/gas therapy

  • Xuehui Huang
  • Funeng Xu
  • Huabo Hou
  • Jianwen Hou
  • Yi WangEmail author
  • Shaobing ZhouEmail author
Research Article


As a minimally invasive local cancer therapy, photothermal therapy (PTT) has aroused intensive interests in recent years. However, the therapeutic effect of PTT is still unsatisfying due to the production of heat shock proteins. Combination therapy has been regarded as a promising strategy to enhance therapeutic efficiency. In this study, a novel intelligent protoporphyrin (PpIX)-based polymer nanoplatform is developed for synergistic enhancement of cancer treatment through combined PTT and nitric oxide (NO) therapy. The core of the nanoparticle is composed of closely packed porphyrin-based NO donors and PpIX branches of the block copolymer. The prepared nanoparticles exhibit good photothermal conversion capability and high sensitivity to release NO under light illumination. And the produced high localized temperature and intracellular NO concentration could efficiently inhibit cancer cells both in vitro and in vivo. More important, this therapeutic nanoplatform can fundamentally eliminate the emergence of multidrug resistance and overcome the hypoxia microenvironment in tumors because of the absence of chemotherapeutic drugs and the oxygen-independent process, thus opening up new ideas for multifunctional therapeutic agent design for treatment of multidrug-resistant cancer.


photothermal therapy gas therapy micelles combination therapy nanocarrier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the National Key Research and Development Program of China (No. 2017YFB0702602), the China National Funds for Distinguished Young Scientists (No. 51725303), the National Natural Science Foundation of China (Nos. 21574105, 51603172, and 81701831) and the Sichuan Province Youth Science and Technology Innovation Team (No. 2016TD0026).

Supplementary material

12274_2019_2307_MOESM1_ESM.pdf (2.7 mb)
Stimuli-responsive nitric oxide generator for light-triggered synergistic cancer photothermal/gas therapy


  1. [1]
    Yan, J. J.; Zhang, X. D.; Liu, Y.; Ye, Y. Q.; Yu, J. C.; Chen, Q.; Wang, J. Q.; Zhang, Y. Q.; Hu, Q. Y.; Kang, Y. et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Res., in press, DOI: 10.1007/s12274-018-2262-y.Google Scholar
  2. [2]
    Yang, C. Y.; Chen, Y. D.; Guo, W.; Gao, Y.; Song, C. Q.; Zhang, Q.; Zheng, N. N.; Han, X. J.; Guo, C. S. Bismuth ferrite-based nanoplatform design: An ablation mechanism study of solid tumor and NIR-triggered photothermal/photodynamic combination cancer therapy. Adv. Funct. Mater. 2018 28, 1706827.CrossRefGoogle Scholar
  3. [3]
    Wang, Y.; Wei, G. Q.; Zhang, X. B.; Xu, F. N.; Xiong, X.; Zhou, S. B. A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater. 2017 29, 1605357.CrossRefGoogle Scholar
  4. [4]
    Zhao, N.; Wu, B. Y.; Hu, X. L.; Xing, D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials 2017 141, 40–49.CrossRefGoogle Scholar
  5. [5]
    Han, K.; Zhu, J. Y.; Jia, H. Z.; Wang, S. B.; Li, S. Y.; Zhang, X. Z.; Han, H. Y. Mitochondria-targeted chimeric peptide for trinitarian overcoming of drug resistance. ACS Appl. Mater. Interfaces 2016 8, 25060–25068.CrossRefGoogle Scholar
  6. [6]
    Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018 61, 1503–1552.CrossRefGoogle Scholar
  7. [7]
    Li, X. S.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem., Int. Ed. 2018 57, 11522–11531.CrossRefGoogle Scholar
  8. [8]
    Zhang, W. T.; Li, S. H.; Liu, X. N.; Yang, C. Y.; Hu, N.; Dou, L. N.; Zhao, B. X.; Zhang, Q. Y.; Suo, Y. R.; Wang, J. L. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv. Funct. Mater. 2018 28, 1706375.CrossRefGoogle Scholar
  9. [9]
    Li, X. S.; Yu, S.; Lee, D.; Kim, G.; Lee, B.; Cho, Y.; Zheng, B. Y.; Ke, M. R.; Huang, J. D.; Nam, K. T. et al. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano 2018 12, 681–688.CrossRefGoogle Scholar
  10. [10]
    Deng, K. R.; Li, C. X.; Huang, S. S.; Xing, B. G.; Jin, D. Y.; Zeng, Q. G.; Hou, Z. Y.; Lin, J. Recent progress in near infrared light triggered photodynamic therapy. Small 2017 13, 1702299.CrossRefGoogle Scholar
  11. [11]
    Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010 110, 2795–2838.CrossRefGoogle Scholar
  12. [12]
    He, H.; Ji, S. S.; He, Y.; Zhu, A. J.; Zou, Y. L.; Deng, Y. B.; Ke, H. T.; Yang, H.; Zhao, Y. L.; Guo, Z. Q. et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv. Mater. 2017 29, 1606690.CrossRefGoogle Scholar
  13. [13]
    Masuda, S.; Izpisua Belmonte, J. C. The microenvironment and resistance to personalized cancer therapy. Nat. Rev. Clin. Oncol. 2013 10, 79.CrossRefGoogle Scholar
  14. [14]
    Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016 19, 274–283.CrossRefGoogle Scholar
  15. [15]
    Zhu, H. J.; Li, J. C.; Qi, X. Y.; Chen, P.; Pu, K. Y. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 2018 18, 586–594.CrossRefGoogle Scholar
  16. [16]
    Chen, J.; Luo, H. L.; Liu, Y.; Zhang, W.; Li, H. X.; Luo, T.; Zhang, K.; Zhao, Y. X.; Liu, J. J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 2017 11, 12849–12862.CrossRefGoogle Scholar
  17. [17]
    Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015 137, 1539–1547.CrossRefGoogle Scholar
  18. [18]
    Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015 6, 8785.CrossRefGoogle Scholar
  19. [19]
    Luo, Z. Y.; Zheng, M. B.; Zhao, P. F.; Chen, Z.; Siu, F. M.; Gong, P.; Gao, G. H.; Sheng, Z. H.; Zheng, C. F.; Ma, Y. F. et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci. Rep. 2016 6, 23393.CrossRefGoogle Scholar
  20. [20]
    Li, R. Q.; Zhang, C.; Xie, B. R.; Yu, W. Y.; Qiu, W. X.; Cheng, H.; Zhang, X. Z. A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 2019 194, 84–93, DOI: 10.1016/j.biomaterials.2018.12.017.CrossRefGoogle Scholar
  21. [21]
    Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. An O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapy. Adv. Funct. Mater. 2017 27, 1700626.CrossRefGoogle Scholar
  22. [22]
    Wang, X. Q.; Peng, M. Y.; Li, C. X.; Zhang, Y.; Zhang, M. K.; Tang, Y.; Liu, M. D.; Xie, B. R.; Zhang, X. Z. Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett. 2018 18, 6804–6811.CrossRefGoogle Scholar
  23. [23]
    Rong, Y.; Mack, P. Apoptosis induced by hyperthermia in dunn osteosarcoma cell line in vitro. Int. J. Hyperthermia 2000 16, 19–27.CrossRefGoogle Scholar
  24. [24]
    Xiao, Z. Y.; Xu, C. T.; Jiang, X. H.; Zhang, W. L.; Peng, Y. X.; Zou, R. J.; Huang, X. J.; Liu, Q.; Qin, Z. Y.; Hu, J. Q. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells. Nano Res. 2016 9, 1934–1947.CrossRefGoogle Scholar
  25. [25]
    Ye, S. Y.; Rao, J. M.; Qiu, S. H.; Zhao, J. L.; He, H.; Yan, Z. L.; Yang, T.; Deng, Y. B.; Ke, H. T.; Yang, H. et al. Rational design of conjugated photosensitizers with controllable photoconversion for dually cooperative phototherapy. Adv. Mater. 2018 30, 1801216.CrossRefGoogle Scholar
  26. [26]
    Chen, H. B.; Adam, A.; Cheng, Y. F.; Tang, S.; Hartung, J.; Bao, E. D. Localization and expression of heat shock protein 70 with rat myocardial cell damage induced by heat stress in vitro and in vivo. Mol. Med. Rep. 2015 11, 2276–2284.CrossRefGoogle Scholar
  27. [27]
    Wei, X.; Liu, L. Q.; Guo, X.; Wang, Y.; Zhao, J. Y.; Zhou, S. B. Lightactivated ROS-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic therapy of multidrug-resistant tumors. ACS Appl. Mater. Interfaces 2018 10, 17672–17684.CrossRefGoogle Scholar
  28. [28]
    Wang, Y.; Wei, G. Q.; Zhang, X. B.; Huang, X. H.; Zhao, J. Y.; Guo, X.; Zhou, S. B. Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 2018 14, 1702994.CrossRefGoogle Scholar
  29. [29]
    Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016 7, 13193.CrossRefGoogle Scholar
  30. [30]
    Tang, P.; Liu, Y. C.; Liu, Y. M.; Meng, H. R.; Liu, Z. Y.; Li, K.; Wu, D. C. Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 2019 188, 12–23.CrossRefGoogle Scholar
  31. [31]
    Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018 11, 2796–2808.CrossRefGoogle Scholar
  32. [32]
    Wang, Y. Y.; Deng, Y. B.; Luo, H. H.; Zhu, A. J.; Ke, H. T.; Yang, H.; Chen, H. B. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano 2017 11, 12134–12144.CrossRefGoogle Scholar
  33. [33]
    Huo, D.; Liu, S.; Zhang, C.; He, J.; Zhou, Z. Y.; Zhang, H.; Hu, Y. Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano 2017 11, 10159–10174.CrossRefGoogle Scholar
  34. [34]
    Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X. H.; Du, J. F.; Xie, J. N.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater. 2017 29, 1704136.CrossRefGoogle Scholar
  35. [35]
    Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018 9, 1074.CrossRefGoogle Scholar
  36. [36]
    Ng, C. W.; Li, J. C.; Pu, K. Y. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater. 2018 28, 1804688.CrossRefGoogle Scholar
  37. [37]
    Pan, J. B.; Wang, Y. Q.; Zhang, C.; Wang, X. Y.; Wang, H. Y.; Wang, J. J.; Yuan, Y. Z.; Wang, X.; Zhang, X. J.; Yu, C. S. et al. Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater. 2018 30, 1704408.CrossRefGoogle Scholar
  38. [38]
    Ge, R.; Liu, C. W.; Zhang, X.; Wang, W. J.; Li, B. X.; Liu, J.; Liu, Y.; Sun, H. C.; Zhang, D. Q.; Hou, Y. C. et al. Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy. ACS Appl. Mater. Interfaces 2018 10, 20342–20355.CrossRefGoogle Scholar
  39. [39]
    Ma, N.; Zhang, M. K.; Wang, X. S.; Zhang, L.; Feng, J.; Zhang, X. Z. NIR light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer. Adv. Funct. Mater. 2018 28, 1801139.CrossRefGoogle Scholar
  40. [40]
    Yang, J.; Zhai, S. D.; Qin, H.; Yan, H.; Xing, D.; Hu, X. L. NIRcontrolled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imagingguided photothermal-chemotherapy. Biomaterials 2018 176, 1–12.CrossRefGoogle Scholar
  41. [41]
    Zhang, Y. Y.; Yang, D.; Chen, H. Z.; Lim, W. Q.; Phua, F. S. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermalchemotherapy. Biomaterials 2018 163, 14–24.CrossRefGoogle Scholar
  42. [42]
    Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. B.; Wang, C. T.; Zhang, X. J. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018 12, 5241–5252, DOI: 10.1021/acsnano.7b08355.CrossRefGoogle Scholar
  43. [43]
    Kim, J.; Yung, B. C.; Kim, W. J.; Chen, X. Y. Combination of nitric oxide and drug delivery systems: Tools for overcoming drug resistance in chemotherapy. J. Control. Release 2017 263, 223–230.CrossRefGoogle Scholar
  44. [44]
    Fan, W. P.; Yung, B. C.; Chen, X. Y. Stimuli-responsive no release for on-demand gas-sensitized synergistic cancer therapy. Angew. Chem., Int. Ed. 2018 57, 8383–8394.CrossRefGoogle Scholar
  45. [45]
    Hare, J. M.; Stamler, J. S. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest. 2005 115, 509–517.CrossRefGoogle Scholar
  46. [46]
    Masterson, T. A.; Arora, H.; Kulandavelu, S.; Carroll, R. S.; Kaiser, U. B.; Gultekin, S. H.; Hare, J. M.; Ramasamy, R. S-nitrosoglutathione reductase (GSNOR) deficiency results in secondary hypogonadism. J. Sex. Med. 2018 15, 654–661.CrossRefGoogle Scholar
  47. [47]
    Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci. 2008 27, 2783–2802.CrossRefGoogle Scholar
  48. [48]
    Dulce, R. A.; Mayo, V.; Rangel, E. B.; Balkan, W.; Hare, J. M. Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: Role of nitroso-redox balance. Circ. Res. 2015 116, 46–55.CrossRefGoogle Scholar
  49. [49]
    Lundberg, J. O.; Gladwin, M. T.; Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015 14, 623–641.CrossRefGoogle Scholar
  50. [50]
    Deepagan, V. G.; Ko, H.; Kwon, S.; Rao, N. V.; Kim, S. K.; Um, W.; Lee, S.; Min, J.; Lee, J.; Choi, K. Y. et al. Intracellularly activatable nanovasodilators to enhance passive cancer targeting regime. Nano Lett 2018 18, 2637–2644.CrossRefGoogle Scholar
  51. [51]
    Wei, G. Q.; Wang, Y.; Huang, X. H.; Yang, G.; Zhao, J. Y.; Zhou, S. B. Enhancing the accumulation of polymer micelles by selectively dilating tumor blood vessels with no for highly effective cancer treatment. Adv. Healthc. Mater. 2018 7, 1801094.CrossRefGoogle Scholar
  52. [52]
    Yang, T.; Zelikin, A. N.; Chandrawati, R. Progress and promise of nitric oxide-releasing platforms. Adv. Sci. 2018 5, 1701043.CrossRefGoogle Scholar
  53. [53]
    Jin, Z. K.; Wen, Y. Y.; Hu, Y. X.; Chen, W. W.; Zheng, X. F.; Guo, W. S.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. MRI-guided and ultrasoundtriggered release of NO by advanced nanomedicine. Nanoscale 2017 9, 3637–3645.CrossRefGoogle Scholar
  54. [54]
    Jia, X. B.; Zhang, Y. H.; Zou, Y.; Wang, Y.; Niu, D. C.; He, Q. J.; Huang, Z. J.; Zhu, W. H.; Tian, H.; Shi, J. L. et al. Dual intratumoral redox/ enzymeresponsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy. Adv. Mater. 2018 30, 1704490.CrossRefGoogle Scholar
  55. [55]
    Zhang, K.; Xu, H. X.; Jia, X. Q.; Chen, Y.; Ma, M.; Sun, L. P.; Chen, H. R. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano 2016 10, 10816–10828.CrossRefGoogle Scholar
  56. [56]
    Guo, R. R.; Tian, Y.; Wang, Y. J.; Yang, W. L. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer. Adv. Funct. Mater. 2017 27, 1606398.CrossRefGoogle Scholar
  57. [57]
    Chen, L. J.; He, Q. J.; Lei, M. Y.; Xiong, L. W.; Shi, K.; Tan, L. W.; Jin, Z. K.; Wang, T. F.; Qian, Z. Y. Facile coordination-precipitation route to insoluble metal Roussin’s black salts for NIR-responsive release of NO for anti-metastasis. ACS Appl. Mater. Interfaces 2017 9, 36473–36477.CrossRefGoogle Scholar
  58. [58]
    Beckman, J. S.; Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996, 271, C1424–C1437.CrossRefGoogle Scholar
  59. [59]
    Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015 5, 225–233.CrossRefGoogle Scholar
  60. [60]
    Bourassa, J. L.; Ford, P. C. Flash and continuous photolysis studies of Roussin’s red salt dianion Fe2S2(NO)4 2- in solution. Coord. Chem. Rev. 2000, 200-202, 887–900.CrossRefGoogle Scholar
  61. [61]
    Bourassa, J.; DeGraff, W.; Kudo, S.; Wink, D. A.; Mitchell, J. B.; Ford, P. C. Photochemistry of Roussin’s red salt, Na2[Fe2S2(NO)4], and of Roussin’s black salt, NH4[Fe4S3(NO)7], in situ nitric oxide generation to sensitize γ-radiation induced cell death. J. Am. Chem. Soc. 1997 119, 2853–2860.CrossRefGoogle Scholar
  62. [62]
    Janczyk, A.; Wolnicka-Glubisz, A.; Chmura, A.; Elas, M.; Matuszak, Z.; Stochel, G.; Urbanska, K. NO-dependent phototoxicity of Roussin’s black salt against cancer cells. Nitric Oxide 2004 10, 42–50.CrossRefGoogle Scholar
  63. [63]
    Yan, L. S.; Amirshaghaghi, A.; Huang, D.; Miller, J.; Stein, J. M.; Busch, T. M.; Cheng, Z. L.; Tsourkas, A. Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Adv. Funct. Mater. 2018 28, 1707030.CrossRefGoogle Scholar
  64. [64]
    Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013 7, 2541–2550.CrossRefGoogle Scholar
  65. [65]
    Conrado, C. L.; Wecksler, S.; Egler, C.; Magde, D.; Ford, P. C. Synthesis and photochemical properties of a novel iron-sulfur-nitrosyl cluster derivatized with the pendant chromophore protoporphyrin IX. Inorg. Chem. 2004 43, 5543–5549.CrossRefGoogle Scholar
  66. [66]
    Fuhrhop, J. H.; Demoulin, C.; Boettcher, C.; Koening, J.; Siggel, U. Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups. J. Am. Chem. Soc. 1992 114, 4159–4165.CrossRefGoogle Scholar
  67. [67]
    Seo, J.; Jang, J.; Warnke, S.; Gewinner, S.; Schöllkopf, W.; von Helden, G. Stacking geometries of early protoporphyrin IX aggregates revealed by gas-phase infrared spectroscopy. J. Am. Chem. Soc. 2016 138, 16315–16321.CrossRefGoogle Scholar
  68. [68]
    Wecksler, S.; Mikhailovsky, A.; Ford, P. C. Photochemical production of nitric oxide via two-photon excitation with NIR light. J. Am. Chem. Soc. 2004 126, 13566–13567.CrossRefGoogle Scholar
  69. [69]
    Qu, Q. Q.; Wang, Y.; Zhang, L.; Zhang, X. B.; Zhou, S. B. A nanoplatform with precise control over release of cargo for enhanced cancer therapy. Small 2016 12, 1378–1390.CrossRefGoogle Scholar
  70. [70]
    Mallory, M.; Gogineni, E.; Jones, G. C.; Greer, L.; Simone II, C. B. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit. Rev. Oncol. Hematol. 2016 97, 56–64.CrossRefGoogle Scholar
  71. [71]
    Shah, B. P.; Pasquale, N.; De, G. J.; Tan, T.; Ma, J. J.; Lee, K. B. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 2014 8, 9379–9387.CrossRefGoogle Scholar
  72. [72]
    Cooper, C. E.; Giulivi, C. Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. Am. J. Physiol. Cell Physiol. 2007, 292, C1993–C2003.CrossRefGoogle Scholar
  73. [73]
    Elfering, S. L.; Sarkela, T. M.; Giulivi, C. Biochemistry of mitochondrial nitric-oxide synthase. J. Biol. Chem. 2002 277, 38079–38086.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations