Advertisement

Conductive polymers for stretchable supercapacitors

  • Yaqun WangEmail author
  • Yu Ding
  • Xuelin Guo
  • Guihua YuEmail author
Review Article
  • 34 Downloads

Abstract

Stretchable energy storage devices, maintaining the capability of steady operation under large mechanical strain, have become increasing more important with the development of stretchable electronic devices. Stretchable supercapacitors (SSCs), with high power density, modest energy density, and superior mechanical properties are regarded as one of the most promising power supplies to stretchable electronic devices. Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly(3,4-ehtylenedioxythiophene) (PEDOT), are among the well-studied electroactive materials for the construction of SSCs because of their high specific theoretical capacity, excellent electrochemical activity, light weight, and high flexibility. Much effort has been devoted to developing stretchable, conductive polymer-based SSCs with different device structures, such as sandwich-type and fiber-shaped type SSCs. This review summarizes the material and structural design for conductive polymer-based SSCs and discusses the challenge and important directions in this emerging field.

Keywords

conductive polymer stretchable supercapacitor pseudocapacitive energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Y. Q. W. is thankful for financial support from the Shandong Scientific Research Awards Foundation for Outstanding Young Scientists (No. ZR2018BEM030), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ058) and the Program for Tsingtao Al-ion Power and Energy-storage Battery Research Team in the University. G. H. Y. acknowledges financial support from the Welch Foundation award (No. F-1861), Alfred P. Sloan Research Fellowship, and Camille Dreyfus Teacher-Scholar Award.

References

  1. [1]
    Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.CrossRefGoogle Scholar
  2. [2]
    Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.CrossRefGoogle Scholar
  3. [3]
    Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425.CrossRefGoogle Scholar
  4. [4]
    Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.CrossRefGoogle Scholar
  5. [5]
    Souri, H.; Bhattacharyya, D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl. Mater. Interfaces 2018, 10, 20845–20853.CrossRefGoogle Scholar
  6. [6]
    Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.CrossRefGoogle Scholar
  7. [7]
    Gong, S.; Cheng, W. L. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 2017, 7, 1700648.CrossRefGoogle Scholar
  8. [8]
    Li, H. S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L. L.; Zhang, X. G.; Ellison, C. J.; Yu, G. H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898.CrossRefGoogle Scholar
  9. [9]
    An, T. C.; Cheng, W. L. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 2018, 6, 15478–15494.CrossRefGoogle Scholar
  10. [10]
    Shang, Y. Y.; Wang, C. H.; He, X. D.; Li, J. J.; Peng, Q. Y.; Shi, E. Z.; Wang, R. G.; Du, S. Y.; Cao, A. Y.; Li, Y. B. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 2015, 12, 401–409.CrossRefGoogle Scholar
  11. [11]
    Yun, T. G.; Hwang, B. L.; Kim, D.; Hyun, S.; Han, S. M. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228–9234.CrossRefGoogle Scholar
  12. [12]
    Choi, C.; Lee, J. M.; Kim, S. H.; Kim, S. J.; Di, J. T.; Baughman, R. H. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 2016, 16, 7677–7684.CrossRefGoogle Scholar
  13. [13]
    Kim, K. J.; Lee, J. A.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Highly stretchable hybrid nanomembrane supercapacitors. RSC Adv. 2016, 6, 24756–24759.CrossRefGoogle Scholar
  14. [14]
    Dong, K.; Wang, Y. C.; Deng, J. N.; Dai, Y. J.; Zhang, S. L.; Zou, H. Y.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A highly stretchable and washable allyarn- based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490–9499.CrossRefGoogle Scholar
  15. [15]
    Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 2017, 7, 17449.CrossRefGoogle Scholar
  16. [16]
    Zhu, Y. P.; Li, N.; Lv, T.; Yao, Y.; Peng, H. N.; Shi, J.; Cao, S. K.; Chen, T. Ag-doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 2018, 6, 941–947.CrossRefGoogle Scholar
  17. [17]
    Guo, Y.; Zheng, K. Q.; Wan, P. B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.CrossRefGoogle Scholar
  18. [18]
    Zhang, N.; Zhou, W. Y.; Zhang, Q.; Luan, P. S.; Cai, L.; Yang, F.; Zhang, X.; Fan, Q. X.; Zhou, W. B.; Xiao, Z. J. et al. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale 2015, 7, 12492–12497.CrossRefGoogle Scholar
  19. [19]
    Guo, F. M.; Xu, R. Q.; Cui, X.; Zhang, L.; Wang, K. L.; Yao, Y. W.; Wei, J. Q. High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J. Mater. Chem. A 2016, 4, 9311–9318.CrossRefGoogle Scholar
  20. [20]
    Pu, J.; Wang, X. H.; Xu, R. X.; Komvopoulos, K. Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 2016, 10, 9306–9315.CrossRefGoogle Scholar
  21. [21]
    Choi, C.; Kim, J. H.; Sim, H. J.; Di, J. T.; Baughman, R. H.; Kim, S. J. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv. Energy Mater. 2017, 7, 1602021.CrossRefGoogle Scholar
  22. [22]
    Wang, X.; Yang, C. Y.; Jin, J.; Li, X. W.; Cheng, Q. L.; Wang, G. C. Highperformance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. J. Mater. Chem. A 2018, 6, 4432–4442.CrossRefGoogle Scholar
  23. [23]
    Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3,4- ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65, 295–301.CrossRefGoogle Scholar
  24. [24]
    Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696.CrossRefGoogle Scholar
  25. [25]
    Shi, Y.; Peng, L. L.; Yu, G. H. Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 2015, 7, 12796–12806.CrossRefGoogle Scholar
  26. [26]
    Xie, Y. Z.; Liu, Y.; Zhao, Y. D.; Tsang, Y. H.; Lau, S. P.; Huang, H. T.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149.CrossRefGoogle Scholar
  27. [27]
    Jin, H. Y.; Zhou, L. M.; Mak, C. L.; Huang, H. T.; Tang, W. M.; Chan, H. L. W. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/ stretchable electronics. Nano Energy 2015, 11, 662–670.CrossRefGoogle Scholar
  28. [28]
    Zang, X. B.; Zhu, M.; Li, X.; Li, X. M.; Zhen, Z.; Lao, J. C.; Wang, K. L.; Kang, F. Y.; Wei, B. Q.; Zhu, H. W. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 2015, 15, 83–91.CrossRefGoogle Scholar
  29. [29]
    Guo, K.; Wang, X. F.; Hu, L. T.; Zhai, T. Y.; Li, H. Q.; Yu, N. Highly stretchable waterproof fiber asymmetric supercapacitors in an integrated structure. ACS Appl. Mater. Interfaces 2018, 10, 19820–19827.CrossRefGoogle Scholar
  30. [30]
    Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.CrossRefGoogle Scholar
  31. [31]
    Qi, R. J.; Nie, J. H.; Liu, M. Y.; Xia, M. Y.; Lu, X. M. Stretchable V2O5/ PEDOT supercapacitors: A modular fabrication process and charging with triboelectric nanogenerators. Nanoscale 2018, 10, 7719–7725.CrossRefGoogle Scholar
  32. [32]
    Wang, S. L.; Liu, N. S.; Su, J.; Li, L. Y.; Long, F.; Zou, Z. G.; Jiang, X. L.; Gao, Y. H. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 2017, 11, 2066–2074.CrossRefGoogle Scholar
  33. [33]
    Nyström, G.; Razaq, A.; Strømme, M.; Nyholm, L.; Mihranyan, A. Ultrafast all-polymer paper-based batteries. Nano Lett. 2009, 9, 3635–3639.CrossRefGoogle Scholar
  34. [34]
    Liu, L.; Tian, Q. Y.; Yao, W. J.; Li, M. X.; Li, Y. W.; Wu, W. All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J. Power Sources 2018, 397, 59–67.CrossRefGoogle Scholar
  35. [35]
    Zhao, X.; Wang, K. Q.; Li, B.; Wang, C.; Ding, Y. Q.; Li, C. Q.; Mao, L. Q.; Lin, Y. Q. Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells. Anal. Chem. 2018, 90, 7158–7163.CrossRefGoogle Scholar
  36. [36]
    An, T. C.; Ling, Y. Z.; Gong, S.; Zhu, B. W.; Zhao, Y. M.; Dong, D. S.; Yap, L. W.; Wang, Y.; Cheng, W. L. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Adv. Mater. Technol., in press, DOI: 10.1002/admt.201800473.Google Scholar
  37. [37]
    Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.CrossRefGoogle Scholar
  38. [38]
    Huang, Y.; Zhong, M.; Shi, F. K.; Liu, X. Y.; Tang, Z. J.; Wang, Y. K.; Huang, Y.; Hou, H. Q.; Xie, X. M.; Zhi, C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9141–9145.CrossRefGoogle Scholar
  39. [39]
    Cuentas-Gallegos, A. K.; Lira-Cantú, M.; Casañ-Pastor, N.; Gómez-Romero, P. Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 2005, 15, 1125–1133.CrossRefGoogle Scholar
  40. [40]
    Park, J. H.; Ko, J. M.; Park, O. O.; Kim, D. W. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 2002, 105, 20–25.CrossRefGoogle Scholar
  41. [41]
    Bhat, D. K.; Kumar, M. S. N and P doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J. Mater. Sci. 2007, 42, 8158–8162.CrossRefGoogle Scholar
  42. [42]
    Zhao, C.; Shu, K. W.; Wang, C. Y.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochim. Acta 2015, 172, 12–19.CrossRefGoogle Scholar
  43. [43]
    Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237.CrossRefGoogle Scholar
  44. [44]
    Xu, J.; Ding, J. N.; Zhou, X. S.; Zhang, Y.; Zhu, W. J.; Liu, Z. F.; Ge, S. H.; Yuan, N. Y.; Fang, S. L.; Baughman, R. H. Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@ Au@carbon nanotube with ultrafast axial electron transport. J. Power Sources 2017, 340, 302–308.CrossRefGoogle Scholar
  45. [45]
    Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.CrossRefGoogle Scholar
  46. [46]
    Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.CrossRefGoogle Scholar
  47. [47]
    Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466–2477.CrossRefGoogle Scholar
  48. [48]
    Wang, Y. Q.; Shi, Y.; Pan, L. J.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. H. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 2015, 15, 7736–7741.CrossRefGoogle Scholar
  49. [49]
    Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.CrossRefGoogle Scholar
  50. [50]
    Zhao, F.; Bae, J.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv. Mater. 2018, 30, 1801796.CrossRefGoogle Scholar
  51. [51]
    Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganicgraphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183–6199.CrossRefGoogle Scholar
  52. [52]
    Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738–762.CrossRefGoogle Scholar
  53. [53]
    Ren, J.; Ren, R. P.; Lv, Y. K. Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem. Eng. J. 2018, 349, 111–118.CrossRefGoogle Scholar
  54. [54]
    Ren, D. Y.; Dong, L. B.; Wang, J. J.; Ma, X. P.; Xu, C. J.; Kang, F. Y. Facile preparation of high-performance stretchable fiber-like electrodes and supercapacitors. Chemistryselect 2018, 3, 4179–4184.CrossRefGoogle Scholar
  55. [55]
    Zhang, Z. T.; Wang, L.; Li, Y. M.; Wang, Y. H.; Zhang, J.; Guan, G. Z.; Pan, Z. Y.; Zheng, G. F.; Peng, H. S. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater. 2017, 7, 1601814.CrossRefGoogle Scholar
  56. [56]
    Li, K.; Huang, Y. S.; Liu, J. J.; Sarfraz, M.; Agboola, P. O.; Shakir, I.; Xu, Y. X. A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. J. Mater. Chem. A 2018, 6, 1802–1808.CrossRefGoogle Scholar
  57. [57]
    Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356–362.CrossRefGoogle Scholar
  58. [58]
    Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 2017, 7, 1600976.CrossRefGoogle Scholar
  59. [59]
    Zhang, Q. C.; Sun, J.; Pan, Z. H.; Zhang, J.; Zhao, J. X.; Wang, X. N.; Zhang, C. X.; Yao, Y. G.; Lu, W. B.; Li, Q. W. et al. Stretchable fibershaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39, 219–228.CrossRefGoogle Scholar
  60. [60]
    Moussa, M.; Shi, G.; Wu, H.; Zhao, Z. H.; Voelcker, N. H.; Losic, D.; Ma, J. Development of flexible supercapacitors using an inexpensive graphene/PEDOT/MnO2 sponge composite. Materials & Design 2017, 125, 1–10.CrossRefGoogle Scholar
  61. [61]
    Cheng, X. L.; Zhang, J.; Ren, J.; Liu, N.; Chen, P. N.; Zhang, Y.; Deng, J.; Wang, Y. G.; Peng, H. S. Design of a hierarchical ternary hybrid for a fiber-shaped asymmetric supercapacitor with high volumetric energy density. J. Phys. Chem. C 2016, 120, 9685–9691.CrossRefGoogle Scholar
  62. [62]
    Wu, H.; Zhang, Y. N.; Yuan, W. Y.; Zhao, Y. X.; Luo, S. H.; Yuan, X. W.; Zheng, L. X.; Cheng, L. F. Highly flexible, foldable and stretchable Ni–Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 16617–16626.CrossRefGoogle Scholar
  63. [63]
    Chu, X.; Zhang, H. T.; Su, H.; Liu, F. Y.; Gu, B. N.; Huang, H. C.; Zhang, H. P.; Deng, W.; Zheng, X. T.; Yang, W. Q. A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 2018, 349, 168–175.CrossRefGoogle Scholar
  64. [64]
    Zhao, Y.; Chen, S.; Hu, J.; Yu, J. L.; Feng, G. C.; Yang, B.; Li, C. H.; Zhao, N.; Zhu, C. Z.; Xu, J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 19323–19330.CrossRefGoogle Scholar
  65. [65]
    Chen, T.; Hao, R.; Peng, H. S.; Dai, L. M. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 618–622.Google Scholar
  66. [66]
    Shi, M. J.; Yang, C.; Song, X. F.; Liu, J.; Zhao, L. P.; Zhang, P.; Gao, L. Stretchable wire-shaped supercapacitors with high energy density for size-adjustable wearable electronics. Chem. Eng. J. 2017, 322, 538–545.CrossRefGoogle Scholar
  67. [67]
    Wang, Z. P.; Cheng, J. L.; Guan, Q.; Huang, H.; Li, Y. C.; Zhou, J. W.; Ni, W.; Wang, B.; He, S. S.; Peng, H. S. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018, 45, 210–219.CrossRefGoogle Scholar
  68. [68]
    Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.CrossRefGoogle Scholar
  69. [69]
    Zhou, G. H.; Kim, N. R.; Chun, S. E.; Lee, W.; Um, M. K.; Chou, T. W.; Islam, M. F.; Byun, J. H.; Oh, Y. Highly porous and easy shapeable polydopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon 2018, 130, 137–144.CrossRefGoogle Scholar
  70. [70]
    Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.CrossRefGoogle Scholar
  71. [71]
    Lee, H.; Hong, S.; Lee, J.; Suh, Y. D.; Kwon, J.; Moon, H.; Kim, H.; Yeo, J.; Ko, S. H. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 2016, 8, 15449–15458.CrossRefGoogle Scholar
  72. [72]
    Moon, H.; Lee, H.; Kwon, J.; Suh, Y. D.; Kim, D. H.; Ha, I.; Yeo, J.; Hong, S.; Ko, S. H. Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 2017, 7, 41981.CrossRefGoogle Scholar
  73. [73]
    Hao, G. P.; Hippauf, F.; Oschatz, M.; Wisser, F. M.; Leifert, A.; Nickel, W.; Mohamed-Noriega, N.; Zheng, Z. K.; Kaskel, S. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 2014, 8, 7138–7146.CrossRefGoogle Scholar
  74. [74]
    Zhang, N.; Luan, P. S.; Zhou, W. Y.; Zhang, Q.; Cai, L.; Zhang, X.; Zhou, W. B.; Fan, Q. X.; Yang, F.; Zhao, D. et al. Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res. 2014, 7, 1680–1690.CrossRefGoogle Scholar
  75. [75]
    Lv, Z. S.; Tang, Y. X.; Zhu, Z. Q.; Wei, J. Q.; Li, W. L.; Xia, H. R.; Jiang, Y.; Liu, Z. Y.; Luo, Y. F.; Ge, X. et al. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 2018, 30, 1805468.CrossRefGoogle Scholar
  76. [76]
    Chen, C.; Cao, J.; Wang, X. Y.; Lu, Q. Q.; Han, M. M.; Wang, Q. R.; Dai, H. T.; Niu, Z. Q.; Chen, J.; Xie, S. S. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy 2017, 42, 187–194.CrossRefGoogle Scholar
  77. [77]
    Li, L.; Lou, Z.; Han, W.; Chen, D.; Jiang, K.; Shen, G. Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2017, 2, 1600282.CrossRefGoogle Scholar
  78. [78]
    Lim, Y.; Yoon, J.; Yun, J.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Correction to biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2015, 9, 6634.CrossRefGoogle Scholar
  79. [79]
    Hu, R. F.; Zheng, J. P. Preparation of high strain porous polyvinyl alcohol/ polyaniline composite and its applications in all-solid-state supercapacitor. J. Power Sources 2017, 364, 200–207.CrossRefGoogle Scholar
  80. [80]
    Tang, Q. Q.; Chen, M. M.; Yang, C. Y.; Wang, W. Q.; Bao, H.; Wang, G. C. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl. Mater. Interfaces 2015, 7, 15303–15313.CrossRefGoogle Scholar
  81. [81]
    Shi, Y. H.; Zhang, Y.; Jia, L. M.; Zhang, Q.; Xu, X. H. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notchinsensitive supramolecular hydrogel electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 36028–36036.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Country College of Electrical Engineering and AutomationShandong University of Science and TechnologyQingdaoChina
  2. 2.Materials Science and Engineering Program and Department of Mechanical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations