High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite

  • Sudeshna Samanta
  • Mokwon Lee
  • Deok-Soo Kim
  • Jaeyong Kim
  • Lin WangEmail author
Research Article


In the era of miniaturization, the one-dimensional nanostructures presented numerous possibilities to realize operational nanosensors and devices by tuning their electrical transport properties. Upon size reduction, the physical properties of materials become extremely challenging to characterize and understand due to the complex interplay among structures, surface properties, strain effects, distribution of grains, and their internal coupling mechanism. In this report, we demonstrate the fabrication of a single metal-carbon composite nanowire inside a diamond-anvil-cell and examine the in situ pressure-driven electrical transport properties. The nanowire manifests a rapid and reversible pressure dependence of the strong nonlinear electrical conductivity with significant zero-bias differential conduction revealing a quantum tunneling dominant carrier transport mechanism. We fully rationalize our observations on the basis of a metal-carbon framework in a highly compressed nanowire corroborating a quantum-tunneling boundary, in addition to a classical percolation boundary that exists beyond the percolation threshold. The structural phase progressions were monitored to evidence the pressure-induced shape reconstruction of the metallic grains and modification of their intergrain interactions for successful explanation of the electrical transport behavior. The pronounced sensitivity of electrical conductivity to an external pressure stimulus provides a rationale to design low-dimensional advanced pressure sensing devices.


single metal-carbon nanowire high pressure electrical transport Voronoi diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was mainly supported by the National Natural Science Foundation of China (No. 11874076), the National Science Associated Funding (NSAF) (No. U1530402), and Science Challenging Program (No. TZ2016001). S. S. would also like to thank Dr. Christophe Thissieu from Almax easyLab Inc, MA, Cambridge, USA for providing the designer diamond anvils for the experiments. S. S. would like to thank Dr. Ankita Ghatak, S. N. Bose National Centre for Basic Sciences, Kolkata, India for the analysis and discussion on HRTEM data.

Supplementary material

12274_2019_2295_MOESM1_ESM.pdf (2.1 mb)
High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite


  1. [1]
    Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. W.; Zhou, J.; Wang, Z. L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.CrossRefGoogle Scholar
  2. [2]
    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.CrossRefGoogle Scholar
  3. [3]
    Cai, J. Z.; Lu, L.; Kong, W. J.; Zhu, H. W.; Zhang, C.; Wei, B. Q.; Wu, D. H.; Liu, F. Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 026402.CrossRefGoogle Scholar
  4. [4]
    Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825.CrossRefGoogle Scholar
  5. [5]
    Ozden, S.; Autreto, P. A. S.; Tiwary, C. S.; Khatiwada, S.; Machado, L.; Galvao, D. S.; Vajtai, R.; Barrera, E. V.; Ajayan, M. P. Unzipping carbon nanotubes at high impact. Nano Lett. 2014, 14, 4131–4137.CrossRefGoogle Scholar
  6. [6]
    Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.CrossRefGoogle Scholar
  7. [7]
    Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.CrossRefGoogle Scholar
  8. [8]
    Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240–5247.CrossRefGoogle Scholar
  9. [9]
    Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.CrossRefGoogle Scholar
  10. [10]
    Jibril, L.; Ramírez, J.; Zaretski, A. V.; Lipomi, D. J. Single-nanowire strain sensors fabricated by nanoskiving. Sens. Actuators A Phys. 2017, 263, 702–706.CrossRefGoogle Scholar
  11. [11]
    Jeon, J.; Lee, H. B. R.; Bao, Z. N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 2013, 25, 850–855.CrossRefGoogle Scholar
  12. [12]
    Chen, Z.; Pfattner, R.; Bao, Z. N. Characterization and understanding of thermoresponsive polymer composites based on spiky nanostructured fillers. Adv. Electron. Mater. 2017, 3, 1600397.CrossRefGoogle Scholar
  13. [13]
    Bartlett, M. D.; Kazem, N.; Powell-Palm, M. J.; Huang, X. N.; Sun, W. H.; Malen, J. A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2017, 114, 2143–2148.CrossRefGoogle Scholar
  14. [14]
    Paul, R.; Dai, L. M. Interfacial aspects of carbon composites. Compos. Int. 2018, 25, 539–605.CrossRefGoogle Scholar
  15. [15]
    Zaretski, A. V.; Root, S. E.; Savchenko, A.; Molokanova, E.; Printz, A. D.; Jibril, L.; Arya, G.; Mercola, M.; Lipomi, D. J. Metallic nanoislands on graphene as highly sensitive transducers of mechanical, biological, and optical signals. Nano Lett. 2016, 16, 1375–1380.CrossRefGoogle Scholar
  16. [16]
    Mikheykin, A. S.; Dmitriev, V. P.; Chagovets, S. V.; Kuriganova, A. B.; Smirnova, N. V.; Leontyev, I. N. The compressibility of nanocrystalline Pt. Appl. Phys. Lett. 2012, 101, 173111.CrossRefGoogle Scholar
  17. [17]
    Yang, X.; Hu, J.; Chen, S. M.; He, J. L. Understanding the percolation characteristics of nonlinear composite dielectrics. Sci. Rep. 2016, 6, 30597.CrossRefGoogle Scholar
  18. [18]
    Fostner, S.; Brown, R.; Carr, J.; Brown, S. A. Continuum percolation with tunneling. Phys. Rev. B 2014, 89, 075402.CrossRefGoogle Scholar
  19. [19]
    Balberg, I. Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 1987, 59, 1305–1308.CrossRefGoogle Scholar
  20. [20]
    Toker, D.; Azulay, D.; Shimoni, N.; Balberg, I.; Millo, O. Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 2003, 68, 041403.CrossRefGoogle Scholar
  21. [21]
    Schwalb, C. H.; Grimm, C.; Baranowski, M.; Sachser, R.; Porrati, F.; Reith, H.; Das, P.; Müller, J.; Völklein, F.; Kaya, A. et al. A tunable strain sensor using nanogranular metals. Sensors 2010, 10, 9847–9856.CrossRefGoogle Scholar
  22. [22]
    Park, J. H.; Steingart, D. A.; Kodambaka, S.; Ross, F. M. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand. Sci. Adv. 2017, 3, e1700234.CrossRefGoogle Scholar
  23. [23]
    Córdoba, R.; Ibarra, A.; Mailly, D.; Ma De Teresa, J. Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition. Nano Lett. 2018, 18, 1379–1386.CrossRefGoogle Scholar
  24. [24]
    Fernández-Pacheco, A.; De Teresa, J. M.; Córdoba, R.; Ibarra, M. R. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beaminduced deposition. Phys. Rev. B 2009, 79, 174209.CrossRefGoogle Scholar
  25. [25]
    Beloborodov, I. S.; Efetov, K. B.; Lopatin, A. V.; Vinokur, V. M. Transport properties of granular metals at low temperatures. Phys. Rev. Lett. 2003, 91, 246801.CrossRefGoogle Scholar
  26. [26]
    Liao, Z. M.; Xu, J.; Zhang, X. Z.; Yu, D. P. The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires. Nanotechnology 2008, 19, 305402.CrossRefGoogle Scholar
  27. [27]
    Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M.; Efetov, K. B. Granular electronic systems. Rev. Mod. Phys. 2007, 79, 469–518.CrossRefGoogle Scholar
  28. [28]
    Kolb, F.; Schmoltner, K.; Huth, M.; Hohenau, A.; Krenn, J.; Klug, A.; List, E. J. W.; Plank, H. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing. Nanotechnology 2013, 24, 305501.CrossRefGoogle Scholar
  29. [29]
    Durkan, C.; Welland, M. E. Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 2000, 61, 14215–14218.CrossRefGoogle Scholar
  30. [30]
    Prasad Manoharan, M.; Kumar, S.; Haque, M. A.; Rajagopalan, R.; Foley, H. C. Room temperature amorphous to nanocrystalline transformation in ultra-thin films under tensile stress: An in situ TEM study. Nanotechnology 2010, 21, 505707.CrossRefGoogle Scholar
  31. [31]
    Zhu, J.; Quan, Z.; Wang, C.; Wen, X.; Jiang, Y.; Fang, J.; Wang, Z.; Zhao, Y.; Xu, H. Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure. Nanoscale 2016, 8, 5214–5218.CrossRefGoogle Scholar
  32. [32]
    Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.CrossRefGoogle Scholar
  33. [33] [Dear author, please complete this ref.,thanks]
  34. [34]
    Kiuchi, M.; Matsui, S.; Isono, Y. The piezoresistance effect of FIB-deposited carbon nanowires under severe strain. J. Micromech. Microeng. 2008, 18, 065011.CrossRefGoogle Scholar
  35. [35]
    Chakravorty, M.; Das, K.; Raychaudhuri, A. K.; Naik, J. P.; Prewett, P. D. Temperature dependent resistivity of platinum–carbon composite nanowires grown by focused ion beam on SiO2/Si substrate. Microelectron. Eng. 2011, 88, 3360–3364.CrossRefGoogle Scholar
  36. [36]
    Faraby, H.; DiBattista, M.; Bandaru, P. R. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals. Appl. Phys. Lett. 2014, 104, 173107.CrossRefGoogle Scholar
  37. [37]
    Barzola-Quiquia, J.; Schulze, S.; Esquinazi, P. Transport properties and atomic structure of ion-beam-deposited W, Pd and Pt nanostructures. Nanotechnology 2009, 20, 165704.CrossRefGoogle Scholar
  38. [38]
    Lin, J. F.; Bird, J. P.; Rotkina, L.; Bennett, P. A. Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects. Appl. Phys. Lett. 2003, 82, 802–804.CrossRefGoogle Scholar
  39. [39]
    Peñate-Quesada, L.; Mitra, J.; Dawson, P. Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 2007, 18, 215203.CrossRefGoogle Scholar
  40. [40]
    He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.CrossRefGoogle Scholar
  41. [41]
    De Teresa, J. M.; Córdoba, R.; Fernández-Pacheco, A.; Montero, O.; Strichovanec, P.; Ibarra, M. R. Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits. J. Nanomater. 2009, 2009, 936863.CrossRefGoogle Scholar
  42. [42]
    Vaz, A. R.; da Silva, M. M.; Leon, J.; Moshkalev, S. A.; Swart, J. W. Platinum thin films deposited on silicon oxide by focused ion beam: Characterization and application. J. Mater. Sci. 2008, 43, 3429–3434.CrossRefGoogle Scholar
  43. [43]
    Lin, J. F.; Bird, J. P.; Rotkina, L.; Sergeev, A.; Mitin, V. Large effects due to electron–phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires. Appl. Phys. Lett. 2004, 84, 3828–3830.CrossRefGoogle Scholar
  44. [44]
    Wei, Y. X.; Wang, R. J.; Wang, W. H. Soft phonons and phase transition in amorphous carbon. Phys. Rev. B 2005, 72, 012203.CrossRefGoogle Scholar
  45. [45]
    Hoppel, C. P. R.; Bogetti, T. A.; Gillespie, J. W. Jr. Literature review-effects of hydrostatic pressure on the mechanical behavior of composite materials. J. Thermoplast. Compos. Mater. 1995, 8, 375–409.CrossRefGoogle Scholar
  46. [46]
    Bousige, C.; Balima, F.; Machon, D.; Pinheiro, G. S.; Torres-Dias, A.; Nicolle, J.; Kalita, D.; Bendiab, N.; Marty, L.; Bouchiat, V. et al. Biaxial strain transfer in supported graphene. Nano Lett. 2017, 17, 21–27.CrossRefGoogle Scholar
  47. [47]
    Rotundu, C. R.; Cuk, T.; Greene, R. L.; Shen, Z. X.; Hemley, R. J.; Struzhkin, V. V. High-pressure resistivity technique for quasi-hydrostatic compression experiments. Rev. Sci. Instrum. 2013, 84, 063903.CrossRefGoogle Scholar
  48. [48]
    Sun, L.; Wu, Q. Pressure-induced exotic states in rare earth hexaborides. Rep. Prog. Phys. 2016, 79, 084503.CrossRefGoogle Scholar
  49. [49]
    Dukic, M.; Winhold, M.; Schwalb, C. H.; Adams, J. D.; Stavrov, V.; Huth, M.; Fantner, G. E. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers. Nat. Commun. 2016, 7, 12487.CrossRefGoogle Scholar
  50. [50]
    Lau, D. W.; McCulloch, D. G.; Taylor, M. B.; Partridge, J. G.; McKenzie, D. R.; Marks, N. A.; Teo, E. H. T.; Tay, B. K. Abrupt stress induced transformation in amorphous carbon films with a highly conductive transition phase. Phys. Rev. Lett. 2008, 100, 176101.CrossRefGoogle Scholar
  51. [51]
    Nishi, Y.; Hirano, M. Bending stress dependent electrical resistivity of carbon fiber in polymer for health monitoring system. Mater. Trans. 2007, 48, 2735–2738.CrossRefGoogle Scholar
  52. [52]
    Li, X. Y.; Mao, H. K. Solid carbon at high pressure: Electrical resistivity and phase transition. Phys. Chem. Miner. 1994, 21, 1–5.Google Scholar
  53. [53]
    Sagar, R. U. R.; Zhang, X. Z.; Xiong, C. Y.; Yu, Y. Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 2014, 76, 64–70.CrossRefGoogle Scholar
  54. [54]
    Chang, K. C.; Odagaki, T. Localization and tunneling effects in percolating systems. Phys. Rev. B 1987, 35, 2598–2603.CrossRefGoogle Scholar
  55. [55]
    Huth, M.; Porrati, F.; Schwalb, C.; Winhold, M.; Sachser, R.; Dukic, M.; Adams, J.; Fantner, G. Focused electron beam induced deposition: A perspective. Beilstein J. Nanotechnol. 2012, 3, 597–619.CrossRefGoogle Scholar
  56. [56]
    Agraït, N.; Yeyati A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.CrossRefGoogle Scholar
  57. [57]
    Nenashev, A. V.; Jansson, F.; Baranovskii, S. D.; Österbacka, R.; Dvurechenskii, A. V.; Gebhard, F. Hopping conduction in strong electric fields: Negative differential conductivity. Phys. Rev. B 2008, 78, 165207.CrossRefGoogle Scholar
  58. [58]
    Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S. et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sudeshna Samanta
    • 1
    • 2
  • Mokwon Lee
    • 3
  • Deok-Soo Kim
    • 3
  • Jaeyong Kim
    • 2
  • Lin Wang
    • 1
    Email author
  1. 1.Center for High Pressure Science & Technology Advanced ResearchShanghaiChina
  2. 2.HYU-HPSTAR-CIS High Pressure Research Center, Department of PhysicsHanyang UniversitySeoulRepublic of Korea
  3. 3.Voronoi Diagram Research Center, School of Mechanical EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations