Advertisement

Nano Research

, Volume 12, Issue 4, pp 777–783 | Cite as

Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability

  • Weitao Yang
  • Long Ye
  • Fenfa Yao
  • Chuanhong Jin
  • Harald Ade
  • Hongzheng ChenEmail author
Research Article

Abstract

Morphology of the donor:acceptor blend plays a critical role in the photovoltaic performance of the organic solar cells (OSCs). Herein, liquid-phase-exfoliated black phosphorus nanoflakes (BPNFs), for their outstanding electronic property and good compatibility to solution process, were applied to fullerene-free OSCs as morphology modifier. Revealed by X-ray scattering measurements, the PTB7-Th:IEICO-4F blends incorporated with BPNFs exhibit more ordered π-π stacking and promoted domain purity, contributing to lower charge transport resistance and suppressed charge recombination within the bulk heterojunction (BHJ). As a result, a high fill factor (FF) of 0.73 and a best power conversion efficiency (PCE) of 12.2% were obtained for fullerene-free OSCs based on PTB7-Th:IEICO-4F blends incorporating with BPNFs, which is among the highest FF of the as-cast fullerene-free OSCs with PCE over 12%. More importantly, the embedded BPNFs help to improve the morphological stability of the devices probably by retarding the phase mixing in the BHJ during the aging period. Besides, analogous enhancements were observed in another fullerene-free OSCs based on PBDB-T:ITIC. In a word, this work provides a new strategy of using two-dimentional nanoflakes as facile and universal morphology modifier for efficient fullerene-free OSCs.

Keywords

fullerene-free organic solar cells black phosphorus nanoflakes morphology tuning device stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21734008, 51473142, and 61721005) and Zhejiang Province Science and Technology Plan (No. 2018C01047). L. Ye and H. Ade gratefully acknowledge the support by the U.S. Office of Naval Research (ONR, No. N000141712204). X-ray data were acquired at beamlines 11.0.1.2 and 7.3.3 at the ALS, which is a user facility of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. C. Zhu, E. Schaible, A. Hexemer, and C. Wang of the ALS (DOE) are acknowledged for assisting with the experimental setup and providing instrument maintenance.

Supplementary material

12274_2019_2288_MOESM1_ESM.pdf (1.6 mb)
Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability

References

  1. [1]
    Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.CrossRefGoogle Scholar
  2. [2]
    Li, S. S.; Ye, L.; Zhao, W. C.; Yan, H. P.; Yang, B.; Liu, D. L.; Li, W. N.; Ade, H.; Hou, J. H. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 2018, 140, 7159–7167.CrossRefGoogle Scholar
  3. [3]
    Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.CrossRefGoogle Scholar
  4. [4]
    Zheng, Z.; Hu, Q.; Zhang, S. Q.; Zhang, D. Y.; Wang, J. Q.; Xie, S. K.; Wang, R.; Qin, Y. P.; Li, W. N.; Hong, L. et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned holetransporting layer. Adv. Mater. 2018, 30, 1801801.CrossRefGoogle Scholar
  5. [5]
    Cui, Y.; Yao, H. F.; Yang, C. Y.; Zhang, S. Q.; Hou, J. H. Organic solar cells with an efficiency approaching 15%. Acta Polym. Sin. 2018, (2), 223–230. (in Chinese)Google Scholar
  6. [6]
    Li, S. X.; Liu, W. Q.; Li, C.-Z.; Shi, M. M.; Chen, H. Z. Efficient organic solar cells with non-fullerene acceptors. Small 2017, 13, 1701120.CrossRefGoogle Scholar
  7. [7]
    Zhang, X. A tandem polymer solar cell based on non-fullerene-acceptors yields an efficiency approaching 15%. Acta Polym. Sin. 2018, (2), 129–131. (in Chinese)Google Scholar
  8. [8]
    Arnoux, Q.; Watts, B.; Swaraj, S.; Rochet, F.; Tortech, L. X-ray microscopic investigation of molecular orientation in a hole carrier thin film for organic solar cells. Nano Res. 2018, 11, 2771–2782.CrossRefGoogle Scholar
  9. [9]
    Yi, X. P.; Gautam, B.; Constantinou, I.; Cheng, Y. H.; Peng, Z. X.; Klump, E.; Ba, X. C.; Ho, C. H. Y.; Dong, C.; Marder, S. R. et al. Impact of nonfullerene molecular architecture on charge generation, transport, and morphology in PTB7-Th-based organic solar cells. Adv. Funct. Mater. 2018, 28, 1802702.CrossRefGoogle Scholar
  10. [10]
    Zhou, Z. C.; Xu, S. J.; Song, J. N.; Jin, Y. Z.; Yue, Q. H.; Qian, Y. H.; Liu, F.; Zhang, F. Q.; Zhu, X. Z. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 2018, 3, 952–959.CrossRefGoogle Scholar
  11. [11]
    Ye, L.; Zhao, W. C.; Li, S. S.; Mukherjee, S.; Carpenter, J. H.; Awartani, O.; Jiao, X. C.; Hou, J. H., Ade, H. High-efficiency nonfullerene organic solar cells: Critical factors that affect complex multi-length scale morphology and device performance. Adv. Energy Mater. 2017, 7, 1602000.CrossRefGoogle Scholar
  12. [12]
    Li, S. X.; Zhan, L. L.; Zhao, W. C.; Zhang, S. H.; Ali, B.; Fu, Z. S.; Lau, T.-K.; Lu, X. H.; Shi, M. M.; Li, C.-Z. et al. Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. J Mater. Chem. A 2018, 6, 12132–12141.CrossRefGoogle Scholar
  13. [13]
    Graham, K. R.; Cabanetos, C.; Jahnke, J. P.; Idso, M. N.; El Labban, A.; Ngongang Ndjawa, G. O.; Heumueller, T.; Vandewal, K.; Salleo, A.; Chmelka, B. F. et al. Importance of the donor: Fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 2014, 136, 9608–9618.CrossRefGoogle Scholar
  14. [14]
    Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim, J.-H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253–260.CrossRefGoogle Scholar
  15. [15]
    Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by selforganization of polymer blends. Nat. Mater. 2005, 4, 864–868.CrossRefGoogle Scholar
  16. [16]
    Wang, J.-L.; Liu, K.-K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z.-F.; Wu, H.-B.; Cao, Y.; Russell, T. P. Series of multifluorine substituted oligomers for organic solar cells with efficiency over 9% and fill factor of 0.77 by combination thermal and solvent vapor annealing. J. Am. Chem. Soc. 2016, 138, 7687–7697.CrossRefGoogle Scholar
  17. [17]
    Guo, X. G.; Zhou, N. J.; Lou, S. J.; Smith, J.; Tice, D. B.; Hennek, J. W.; Ortiz, R. P.; Navarrete, J. T. L.; Li, S. Y.; Strzalka, J. et al. Polymer solar cells with enhanced fill factors. Nat. Photonics 2013, 7, 825–833.CrossRefGoogle Scholar
  18. [18]
    Wan, Q.; Guo, X.; Wang, Z. Y.; Li, W. B.; Guo, B.; Ma, W.; Zhang, M. J.; Li, Y. F. 10.8% Efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv. Funct. Mater. 2016, 26, 6635–6640.CrossRefGoogle Scholar
  19. [19]
    Li, Y. F. Fullerene-bisadduct acceptors for polymer solar cells. Chem.—Asian J. 2013, 8, 2316–2328.CrossRefGoogle Scholar
  20. [20]
    Dimitrov, S. D.; Durrant, J. R. Materials design considerations for charge generation in organic solar cells. Chem. Mater. 2014, 26, 616–630.CrossRefGoogle Scholar
  21. [21]
    He, Z. C.; Xiao, B.; Liu, F.; Wu, H. B.; Yang, Y. L.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174–179.CrossRefGoogle Scholar
  22. [22]
    Zhang, S. H.; Shah, M. N.; Liu, F.; Zhang, Z. Q.; Hu, Q.; Russell, T. P.; Shi, M. M.; Li, C.-Z.; Chen, H. Z. Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Res. 2017, 10, 3765–3774.CrossRefGoogle Scholar
  23. [23]
    Yao, H. F.; Cui, Y.; Yu, R. N.; Gao, B. W.; Zhang, H.; Hou, J. H. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem., Int. Ed. 2017, 56, 3045–3049.CrossRefGoogle Scholar
  24. [24]
    Zheng, Z.; Wang, R.; Yao, H. F.; Xie, S. K.; Zhang, Y.; Hou, J. H.; Zhou, H. Q.; Tang, Z. Y. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy 2018, 50, 169–175.CrossRefGoogle Scholar
  25. [25]
    Liang, N. N.; Jiang, W.; Hou, J. H.; Wang, Z. H. New developments in non-fullerene small molecule acceptors for polymer solar cells. Mater. Chem. Front. 2017, 1, 1291–1303.CrossRefGoogle Scholar
  26. [26]
    Liu, D. L.; Yang, B.; Jang, B.; Xu, B. W.; Zhang, S. Q.; He, C.; Woo, H. Y.; Hou, J. H. Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 2017, 10, 546–551.CrossRefGoogle Scholar
  27. [27]
    Qian, D. P.; Ye, L.; Zhang, M. J.; Liang, Y. R.; Li, L. J.; Huang, Y.; Guo, X.; Zhang, S. Q.; Tan, Z. A., Hou, J. H. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 2012, 45, 9611–9617.CrossRefGoogle Scholar
  28. [28]
    Kakavelakis, G.; Del Rio Castillo, A. E.; Pellegrini, V.; Ansaldo, A.; Tzourmpakis, P.; Brescia, R.; Prato, M.; Stratakis, E.; Kymakis, E., Bonaccorso, F. Size-tuning of WSe2 flakes for high efficiency inverted organic solar cells. ACS Nano 2017, 11, 3517–3531.CrossRefGoogle Scholar
  29. [29]
    Xu, H.; Zhang, L.; Ding, Z. C.; Hu, J. L.; Liu, J.; Liu, Y. C. Edgefunctionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293–4301.CrossRefGoogle Scholar
  30. [30]
    Liu, S. H.; Lin, S. H.; You, P.; Surya, C.; Lau, S. P.; Yan, F. Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics. Angew. Chem., Int. Ed. 2017, 56, 13717–13721.CrossRefGoogle Scholar
  31. [31]
    Istif, E.; Hernández-Ferrer, J.; Urriolabeitia, E. P.; Stergiou, A.; Tagmatarchis, N.; Fratta, G.; Large, M. J.; Dalton, A. B.; Benito, A. M.; Maser, W. K. Conjugated polymer nanoparticle-graphene oxide charge-transfer complexes. Adv. Funct. Mater. 2018, 28, 1707548.CrossRefGoogle Scholar
  32. [32]
    Yang, X.; Fu, W. F.; Liu, W. Q.; Hong, J. H.; Cai, Y.; Jin, C. H.; Xu, M. S.; Wang, H. B.; Yang, D. R.; Chen, H. Z. Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells. J. Mater. Chem. A 2014, 2, 7727–7733.CrossRefGoogle Scholar
  33. [33]
    Yang, X.; Liu, W. Q.; Xiong, M.; Zhang, Y. Y.; Liang, T.; Yang, J. T.; Xu, M. S.; Ye, J.; Chen, H. Z. Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells. J. Mater. Chem. A 2014, 2, 14798–14806.CrossRefGoogle Scholar
  34. [34]
    Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.CrossRefGoogle Scholar
  35. [35]
    Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996–7002.CrossRefGoogle Scholar
  36. [36]
    Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Black phosphorus: Synthesis and application for solar cells. Adv. Energy Mater. 2018, 8, 1701832.CrossRefGoogle Scholar
  37. [37]
    Kyaw, A. K. K.; Wang, D. H.; Wynands, D.; Zhang, J.; Nguyen, T.-Q.; Bazan, G. C.; Heeger, A. J. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed smallmolecule solar cells. Nano Lett. 2013, 13, 3796–3801.CrossRefGoogle Scholar
  38. [38]
    Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.CrossRefGoogle Scholar
  39. [39]
    Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys.: Conf. Ser. 2010, 247, 012007.Google Scholar
  40. [40]
    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C. Soft X-ray scattering facility at the advanced light source with real-time data processing and analysis. Rev. Sci. Instrum. 2012, 83, 045110.CrossRefGoogle Scholar
  41. [41]
    Li, S. X.; Liu, W. Q.; Li, C.-Z.; Lau, T.-K.; Lu, X. H.; Shi, M. M.; Chen, H. Z. A non-fullerene acceptor with a fully fused backbone for efficient polymer solar cells with a high open-circuit voltage. J. Mater. Chem. A 2016, 4, 14983–14987.CrossRefGoogle Scholar
  42. [42]
    Zhan, L. L.; Li, S. X.; Zhang, H. T.; Gao, F.; Lau, T.-K.; Lu, X. H.; Sun, D. Y.; Wang, P.; Shi, M. M.; Li, C.-Z. et al. A near-infrared photoactive morphology modifier leads to significant current improvement and energy loss mitigation for ternary organic solar cells. Adv. Sci. 2018, 5, 1800755.CrossRefGoogle Scholar
  43. [43]
    Zhang, Y. Y.; Liu, S.; Liu, W. Q.; Liang, T.; Yang, X.; Xu, M. S.; Chen, H. Z. Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. Phys. Chem. Chem. Phys. 2015, 17, 27565–27572.CrossRefGoogle Scholar
  44. [44]
    Ecker, B.; Egelhaaf, H.-J.; Steim, R.; Parisi, J.; Von Hauff, E. Understanding S-shaped current-voltage characteristics in organic solar cells containing a TiOx interlayer with impedance spectroscopy and equivalent circuit analysis. J. Phys. Chem. C 2012, 116, 16333–16337.CrossRefGoogle Scholar
  45. [45]
    Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z. G.; Li, Y. F.; Liu, S. Z. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 2018, 8, 1701757.CrossRefGoogle Scholar
  46. [46]
    Sivaraman, P.; Mishra, S. P.; Bhattacharrya, A. R.; Thakur, A.; Shashidhara, K.; Samui, A. B. Effect of regioregularity on specific capacitance of poly(3-hexylthiophene). Electrochim. Acta 2012, 69, 134–138.CrossRefGoogle Scholar
  47. [47]
    Zhang, Y.; Li, L.; Yuan, S. S.; Li, G. Q.; Zhang, W. F. Electrical properties of the interfaces in bulk heterojunction organic solar cells investigated by electrochemical impedance spectroscopy. Electrochim. Acta 2013, 109, 221–225.CrossRefGoogle Scholar
  48. [48]
    Upama, M. B.; Elumalai, N. K.; Mahmud, M. A.; Wright, M.; Wang, D.; Xu, C.; Uddin, A. Effect of annealing dependent blend morphology and dielectric properties on the performance and stability of non-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 176, 109–118.CrossRefGoogle Scholar
  49. [49]
    Mateker, W. R.; McGehee, M. D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv. Mater. 2017, 29, 1603940.CrossRefGoogle Scholar
  50. [50]
    Kesters, J.; Verstappen, P.; Raymakers, J.; Vanormelingen, W.; Drijkoningen, J.; D’Haen, J.; Manca, J.; Lutsen, L.; Vanderzande, D.; Maes, W. Enhanced organic solar cell stability by polymer (PCPDTBT) side chain functionalization. Chem. Mater. 2015, 27, 1332–1341.CrossRefGoogle Scholar
  51. [51]
    Li, S. X.; Liu, W. Q.; Shi, M. M.; Mai, J. Q.; Lau, T.-K.; Wan, J. H.; Lu, X. H.; Li, C.-Z.; Chen, H. Z. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 2016, 9, 604–610.CrossRefGoogle Scholar
  52. [52]
    Li, S. X.; Zhan, L. L.; Liu, F.; Ren, J.; Shi, M. M.; Li, C.-Z.; Russell, T. P.; Chen, H. Z. An unfused-core-based nonfullerene acceptor enables highefficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.CrossRefGoogle Scholar
  53. [53]
    Zhao, W. C.; Qian, D. P.; Zhang, S. Q.; Li, S. S.; Inganäs, O.; Gao, F.; Hou, J. H. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weitao Yang
    • 1
  • Long Ye
    • 2
  • Fenfa Yao
    • 3
  • Chuanhong Jin
    • 3
  • Harald Ade
    • 2
  • Hongzheng Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, & Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Physics, Organic and Carbon Electronics Laboratory (ORaCEL)North Carolina State UniversityRaleighUSA
  3. 3.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations