Advertisement

Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges

  • Hassan Anwer
  • Asad Mahmood
  • Jechan Lee
  • Ki-Hyun KimEmail author
  • Jae-Woo ParkEmail author
  • Alex C. K. Yip
Review Article
  • 39 Downloads

Abstract

Discharging dye contaminants into water is a major concern around the world. Among a variety of methods to treat dye-contaminated water, photocatalytic degradation has gained attention as a tool for treating the colored water. Herein, we review the recent advancements in photocatalysis for dye degradation in industrial effluents by categorizing photocatalyst materials into three generations. First generation photocatalysts are composed of single-component materials (e.g., TiO2, ZnO, and CdS), while second generation photocatalysts are composed of multiple components in a suspension (e.g., WO3/NiWO4, BiOI/ZnTiO3, and C3N4/Ag3VO4). Photocatalysts immobilized on solid substrates are regarded as third generation materials (e.g., FTO/WO3-ZnO, Steel/TiO2-WO3, and Glass/P-TiO2). Photocatalytic degradation mechanisms, factors affecting the dye degradation, and the lesser-debated uncertainties related to the photocatalysis are also discussed to offer better insights into environmental applications. Furthermore, quantum yields of different photocatalysts are calculated, and a performance evaluation method is proposed to compare photocatalyst systems for dye degradation. Finally, we discuss the present limitations of photocatalytic dye degradation for field applications and the future of the technology.

Keywords

photocatalyst dye wastewater degradation mechanism performance evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

K. H. K. and J. W. P. acknowledge support made by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning Grant Nos. 2016R1E1A1A01940995 and 2018R1A2A1A05023555, respectively.

References

  1. [1]
    Zeng, G. M.; Chen, M.; Zeng, Z. T. Risks of neonicotinoid pesticides. Science 2013, 340, 1403.CrossRefGoogle Scholar
  2. [2]
    Santos-Ebinuma, V. C.; Roberto, I. C.; Teixeira, M. F. S.; Pessoa, A., Jr. Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol. Prog. 2013, 29, 778–785.CrossRefGoogle Scholar
  3. [3]
    Anandhan, M.; Prabaharan, T. Environmental impacts of natural dyeing process using pomegranate peel extract as a dye. Int. J. Appl. Eng. Res. 2018, 13, 7765–7771.Google Scholar
  4. [4]
    Kaur, S.; Rani, S.; Mahajan, R. K.; Asif, M.; Gupta, V. K. Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. J. Ind. Eng. Chem. 2015, 22, 19–27.CrossRefGoogle Scholar
  5. [5]
    Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026.CrossRefGoogle Scholar
  6. [6]
    Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J. E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389.CrossRefGoogle Scholar
  7. [7]
    Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 2014, 692307.CrossRefGoogle Scholar
  8. [8]
    Kommineni, S.; Zoeckler, J.; Stocking, A.; Liang, S.; Flores, A.; Kavanaugh, M.; Rodriguea, R.; Browne, T.; Robert, R.; Brown, A. et al. Advanced oxidation processes (National Water Research Institute, 2011). Google Scholar 2011.Google Scholar
  9. [9]
    Weinberg, N. L.; Weinberg, H. R. Electrochemical oxidation of organic compounds. Chem. Rev. 1968, 68, 449–523.CrossRefGoogle Scholar
  10. [10]
    Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004, 55, 35–43.CrossRefGoogle Scholar
  11. [11]
    Deng, Y.; Zhao, R. Z. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 2015, 1, 167–176.CrossRefGoogle Scholar
  12. [12]
    Khan, M. M.; Adil, S. F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464.CrossRefGoogle Scholar
  13. [13]
    Elsalamony, R. A. Advances in photo-catalytic materials for environmental applications. Res. Rev.: J. Mat. Sci. 2016, 4, 26–50.Google Scholar
  14. [14]
    Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. 2001, 31, 145–157.CrossRefGoogle Scholar
  15. [15]
    Rauf, M. A.; Meetani, M. A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378.CrossRefGoogle Scholar
  16. [16]
    Trandafilovic, L. V.; Jovanovic, D. J.; Zhang, X.; Ptasinska, S.; Dramicanin, M. D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Appl. Catal. B: Environ. 2017, 203, 740–752.CrossRefGoogle Scholar
  17. [17]
    Huang, M. L.; Xu, C. F.; Wu, Z. B.; Huang, Y. F.; Lin, J. M.; Wu, J. H. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigm. 2008, 77, 327–334.CrossRefGoogle Scholar
  18. [18]
    Li, Y. J.; Li, X. D.; Li, J. W.; Yin, J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40, 1119–1126.CrossRefGoogle Scholar
  19. [19]
    Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ. 2013, 129, 255–263.CrossRefGoogle Scholar
  20. [20]
    He, Y. M.; Cai, J.; Li, T. T.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Luo, M. F. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chem. Eng. J. 2013, 215–216, 721–730.CrossRefGoogle Scholar
  21. [21]
    Liang, C.; Niu, C.-G.; Wen, X.-J.; Yang, S.-F.; Shen, M.-C.; Zeng, G.-M. Effective removal of colourless pollutants and organic dyes by Ag@AgCl nanoparticle-modified CaSn(OH)6 composite under visible light irradiation. New J. Chem. 2017, 41, 5334–5346.CrossRefGoogle Scholar
  22. [22]
    Du, Y.-B.; Niu, C.-G.; Zhang, L.; Ruan, M.; Wen, X.-J.; Zhang, X.-G.; Zeng, G.-M. Synthesis of Ag/AgCl hollow spheres based on the Cu2O nanospheres as template and their excellent photocatalytic property. Mol. Catal. 2017, 436, 100–110.CrossRefGoogle Scholar
  23. [23]
    Rochkind, M.; Pasternak, S.; Paz, Y. Using dyes for evaluating photocatalytic properties: A critical review. Molecules 2014, 20, 88–110.CrossRefGoogle Scholar
  24. [24]
    Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255.CrossRefGoogle Scholar
  25. [25]
    Zhang, J. Y.; Xiao, G. C.; Xiao, F.-X.; Liu, B. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: A critical review. Mater. Chem. Front. 2017, 1, 231–250.CrossRefGoogle Scholar
  26. [26]
    Zhang, X. Y.; Qin, J. Q.; Xue, Y.; Yu, P. F.; Zhang, B.; Wang, L. M.; Liu, R. P. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596.CrossRefGoogle Scholar
  27. [27]
    Bhattacharyya, A.; Kawi, S.; Ray, M. B. Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal. Today 2004, 98, 431–439.CrossRefGoogle Scholar
  28. [28]
    Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D. C.; Miotello, A. Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B: Environ. 2015, 168–169, 333–341.CrossRefGoogle Scholar
  29. [29]
    Zou, J.-P.; Wu, D.-D.; Luo, J. M.; Xing, Q.-J.; Luo, X.-B.; Dong, W.-H.; Luo, S.-L.; Du, H.-M.; Suib, S. L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal. 2016, 6, 6861–6867.CrossRefGoogle Scholar
  30. [30]
    Liu, X. Y.; Chen, C. S.; Chen, X. A.; Qian, G. P.; Wang, J. H.; Wang, C.; Cao, Z. S.; Liu, Q. C. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal. Today 2018, 315, 155–161.CrossRefGoogle Scholar
  31. [31]
    Jung, J.-J.; Jang, J.-W.; Park, J.-W. Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers. J. Ind. Eng. Chem. 2016, 44, 52–59.CrossRefGoogle Scholar
  32. [32]
    Mosleh, S.; Rahimi, M. R.; Ghaedi, M.; Dashtian, K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem. 2016, 32, 387–397.CrossRefGoogle Scholar
  33. [33]
    Intarasuwan, K.; Amornpitoksuk, P.; Suwanboon, S.; Graidist, P. Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions. Sep. Purif. Technol. 2017, 177, 304–312.CrossRefGoogle Scholar
  34. [34]
    Yang, J.; Chen, C. C.; Ji, H. W.; Ma, W. H.; Zhao, J. C. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 2005, 109, 21900–21907.CrossRefGoogle Scholar
  35. [35]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  36. [36]
    Teets, T. S.; Nocera, D. G. Photocatalytic hydrogen production. Chem. Commun. 2011, 47, 9268–9274.CrossRefGoogle Scholar
  37. [37]
    Atarod, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 2016, 462, 272–279.CrossRefGoogle Scholar
  38. [38]
    Kyzas, G. Z.; Siafaka, P. I.; Pavlidou, E. G.; Chrissafis, K. J.; Bikiaris, D. N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438–448.CrossRefGoogle Scholar
  39. [39]
    Fil, B. A.; Karcioglu, K. Z.; Boncukcuoglu, R.; Yilmaz, A. E. Removal of cationic dye (basic red 18) from aqueous solution using natural Turkish clay. Global Nest J. 2013, 15, 529–541.CrossRefGoogle Scholar
  40. [40]
    Huo, Y. N.; Chen, X. F.; Zhang, J.; Pan, G. F.; Jia, J. P.; Li, H. X. Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation. Appl. Catal. B: Environ. 2014, 148–149, 550–556.CrossRefGoogle Scholar
  41. [41]
    Kim, L.-J.; Jang, J.-W.; Park, J.-W. Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst. Appl. Catal. B: Environ. 2014, 147, 973–979.CrossRefGoogle Scholar
  42. [42]
    Wang, J.; Lv, Y. H.; Zhang, L. Q.; Liu, B.; Jiang, R. Z.; Han, G. X.; Xu, R.; Zhang, X. D. Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultrason. Sonochem. 2010, 17, 642–648.CrossRefGoogle Scholar
  43. [43]
    Vinodgopal, K.; Kamat, P. V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 1995, 29, 841–845.CrossRefGoogle Scholar
  44. [44]
    Pouretedal, H. R.; Norozi, A.; Keshavarz, M. H.; Semnani, A. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 2009, 162, 674–681.CrossRefGoogle Scholar
  45. [45]
    Daneshvar, N.; Salari, D.; Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A: Chem. 2004, 162, 317–322.CrossRefGoogle Scholar
  46. [46]
    Liu, F. Z.; Leung, Y. H.; Djurišic, A. B.; Ng, A. M. C.; Chan, W. K. Native defects in ZnO: Effect on dye adsorption and photocatalytic degradation. J. Phys. Chem. C 2013, 117, 12218–12228.CrossRefGoogle Scholar
  47. [47]
    Tahir, M.; Amin, N. S. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl. Catal. B: Environ. 2015, 162, 98–109.CrossRefGoogle Scholar
  48. [48]
    Li, K.; Gao, S. M.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023–9030.CrossRefGoogle Scholar
  49. [49]
    Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.CrossRefGoogle Scholar
  50. [50]
    Etacheri, V.; Michlits, G.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 1663–1672.CrossRefGoogle Scholar
  51. [51]
    Yan, M.; Wu, Y. L.; Yan, Y.; Yan, X.; Zhu, F. F.; Hua, Y. Q.; Shi, W. D. Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustainable Chem. Eng. 2016, 4, 757–766.CrossRefGoogle Scholar
  52. [52]
    Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J. G.; Trapalis, C. Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 2017, 310, 571–580.CrossRefGoogle Scholar
  53. [53]
    Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B: Environ. 2014, 144, 885–892.CrossRefGoogle Scholar
  54. [54]
    Munshi, A. M.; Shi, M. W.; Thomas, S. P.; Saunders, M.; Spackman, M. A.; Iyer, K. S.; Smith, N. M. Magnetically recoverable Fe3O4@Au-coated nanoscale catalysts for the A3-coupling reaction. Dalton Trans. 2017, 46, 5133–5137.CrossRefGoogle Scholar
  55. [55]
    Cole-Hamilton, D. J. Homogeneous catalysis—New approaches to catalyst separation, recovery, and recycling. Science 2003, 299, 1702–1706.CrossRefGoogle Scholar
  56. [56]
    Robert, D.; Keller, V.; Keller, N. Immobilization of a semiconductor photocatalyst on solid supports: Methods, materials, and applications. In Photocatalysis and Water Purification: From Fundamentals to Recent Applications; Pichat, P., Ed.; Wiley-VCH: Weinheim, Germany, 2013; pp 145–178.CrossRefGoogle Scholar
  57. [57]
    Gao, F. Q.; Yang, Y.; Wang, T. H. Preparation of porous TiO2/Ag heterostructure films with enhanced photocatalytic activity. Chem. Eng. J. 2015, 270, 418–427.CrossRefGoogle Scholar
  58. [58]
    Park, S.; Choi, G. R.; Lee, J. C.; Kim, Y. C.; Oh, D.; Cho, S.; Lee, J.-H. Organic and inorganic binder-coating properties for immobilization of photocatalytic ZnO nanopowders. Res. Chem. Intermediat. 2010, 36, 819–825.CrossRefGoogle Scholar
  59. [59]
    Nasr-Esfahani, M.; Habibi, M. H. Silver doped TiO2 nanostructure composite photocatalyst film synthesized by sol-gel spin and dip coating technique on glass. Int. J. Photoenergy 2008, 2008, Article ID 628713.Google Scholar
  60. [60]
    Shen, Y. H.; Yu, X.; Lin, W. T.; Zhu, Y.; Zhang, Y. M. A facile preparation of immobilized BiOCl nanosheets/TiO2 arrays on FTO with enhanced photocatalytic activity and reusability. Appl. Surf. Sci. 2017, 399, 67–76.CrossRefGoogle Scholar
  61. [61]
    Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem. Rev. 2010, 11, 157–178.CrossRefGoogle Scholar
  62. [62]
    Tang, J. X.; Lee, C. S.; Lee, S. T. Electronic structures of organic/organic heterojunctions: From vacuum level alignment to Fermi level pinning. J. Appl. Phys. 2007, 101, 064504.CrossRefGoogle Scholar
  63. [63]
    Shi, S.; Gondal, M. A.; Rashid, S. G.; Qi, Q.; Al-Saadi, A. A.; Yamani, Z. H.; Sui, Y. H.; Xu, Q. Y.; Shen, K. Synthesis of g-C3N4/BiOClxBr1-x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 202–211.CrossRefGoogle Scholar
  64. [64]
    Huang, H. W.; Han, X.; Li, X. W.; Wang, S. C.; Chu, P. K.; Zhang, Y. H. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 2015, 7, 482–492.CrossRefGoogle Scholar
  65. [65]
    Pan, D. Y.; Jiao, J. K.; Li, Z.; Guo, Y. T.; Feng, C. Q.; Liu, Y.; Wang, L.; Wu, M. H. Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustainable Chem. Eng. 2015, 3, 2405–2413.CrossRefGoogle Scholar
  66. [66]
    Zhang, W.; Hu, C.; Zhai, W.; Wang, Z. L.; Sun, Y. X.; Chi, F. L.; Ran, S. L.; Liu, X. G.; Lv, Y. H. Novel Ag3PO4/CeO2 p–n hierarchical heterojunction with enhanced photocatalytic performance. Mat. Res. 2016, 19, 673–679.CrossRefGoogle Scholar
  67. [67]
    Xu, W. C.; Fang, J. Z.; Zhu, X. M.; Fang, Z. Q.; Cen, C. P. Fabricaion of improved novel p–n junction BiOI/Bi2Sn2O7 nanocomposite for visible light driven photocatalysis. Mater. Res. Bull. 2015, 72, 229–234.CrossRefGoogle Scholar
  68. [68]
    Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872–1878.CrossRefGoogle Scholar
  69. [69]
    Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.CrossRefGoogle Scholar
  70. [70]
    Ma, D.; Wu, J.; Gao, M. C.; Xin, Y. J.; Sun, Y. Y.; Ma, T. J. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem. Eng. J. 2017, 313, 1567–1576.CrossRefGoogle Scholar
  71. [71]
    Zangeneh, H.; Zinatizadeh, A. A. L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36.CrossRefGoogle Scholar
  72. [72]
    Shukla, K.; Srivastava, V. C. Diethyl carbonate: Critical review of synthesis routes, catalysts used and engineering aspects. RSC Adv. 2016, 6, 32624–32645.CrossRefGoogle Scholar
  73. [73]
    Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1–12.CrossRefGoogle Scholar
  74. [74]
    Guettaï, N.; Amar, H. A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination 2005, 185, 427–437.CrossRefGoogle Scholar
  75. [75]
    Anwer, H.; Park, J.-W. Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants. J. Hazard. Mater. 2018, 358, 416–426.CrossRefGoogle Scholar
  76. [76]
    Nguyen-Phan, T.-D.; Pham, V. H.; Shin, E. W.; Pham, H.-D.; Kim, S.; Chung, J. S.; Kim, E. J.; Hur, S. H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 2011, 170, 226–232.CrossRefGoogle Scholar
  77. [77]
    Bizani, E.; Fytianos, K.; Poulios, I.; Tsiridis, V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater. 2006, 136, 85–94.CrossRefGoogle Scholar
  78. [78]
    Tan, R.; Shen, Y.; Roberts, S. K.; Gee, M. Y.; Blom, D. A.; Greytak, A. B. Reducing competition by coordinating solvent promotes morphological control in alternating layer growth of CdSe/CdS core/shell quantum dots. Chem. Mater. 2015, 27, 7468–7480.CrossRefGoogle Scholar
  79. [79]
    Xu, Z.; Liu, X. X.; Wang, W. P.; Liu, C.; Li, Z. C.; Zhang, Z. J. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles. Sci. Technol. Adv. Mater. 2014, 15, 055006.CrossRefGoogle Scholar
  80. [80]
    Cassano, A. E.; Alfano, O. M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167–197.CrossRefGoogle Scholar
  81. [81]
    Muruganandham, M.; Swaminathan, M. TiO2–UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. J. Hazard. Mater. 2006, 135, 78–86.CrossRefGoogle Scholar
  82. [82]
    Bhati, I.; Punjabi, P. B.; Ameta, S. C. Photocatalytic degradation of fast green using nanosized CeCrO3. Maced. J. Chem. Chem. Eng. 2010, 29, 195–202.Google Scholar
  83. [83]
    Elaziouti; Laouedj, N.; Ahmed, B. ZnO-assisted photocatalytic degradation of Congo Red and Benzopurpurine 4B in aqueous solution. J. Chem. Eng. Process Technol. 2011, 2, 106.Google Scholar
  84. [84]
    Lü, W.; Chen, J.; Wu, Y.; Duan, L. F.; Yang, Y.; Ge, X. Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res. Lett. 2014, 9, 148.CrossRefGoogle Scholar
  85. [85]
    Zhang, A.-Y.; Wang, W.-K.; Pei, D.-N.; Yu, H.-Q. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 2016, 92, 78–86.CrossRefGoogle Scholar
  86. [86]
    Li, X. R.; Wang, J. G.; Men, Y.; Bian, Z. F. TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions. Appl. Catal. B: Environ. 2016, 187, 115–121.CrossRefGoogle Scholar
  87. [87]
    Bhandari, S.; Vardia, J.; Malkani, R. K.; Ameta, S. C. Effect of transition metal ions on photocatalytic activity of ZnO in bleaching of some dyes. Toxicol. Environ. Chem. 2006, 88, 35–44.CrossRefGoogle Scholar
  88. [88]
    Dariani, R. S.; Esmaeili, A.; Mortezaali, A.; Dehghanpour, S. Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 2016, 127, 7143–7154.CrossRefGoogle Scholar
  89. [89]
    Chu, C.-Y.; Huang, M. H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.CrossRefGoogle Scholar
  90. [90]
    Meng, L. S.; Chen, Z. Y.; Ma, Z. Y.; He, S.; Hou, Y. D.; Li, H.-H.; Yuan, R. S.; Huang, X.-H.; Wang, X. X.; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294–298.CrossRefGoogle Scholar
  91. [91]
    Mena, E.; Rey, A.; Rodríguez, E. M.; Beltrán, F. J. Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Appl. Catal. B: Environ. 2017, 202, 460–472.CrossRefGoogle Scholar
  92. [92]
    Chen, C. C.; Zhao, W.; Li, J. Y.; Zhao, J. C.; Hidaka, H.; Serpone, N. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion. Environ. Sci. Technol. 2002, 36, 3604–3611.CrossRefGoogle Scholar
  93. [93]
    Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. Lowering of photocatalytic activity of TiO2 particles during oxidative decomposition of benzene in aerated liquid. Appl. Catal. B: Environ. 2010, 94, 186–191.CrossRefGoogle Scholar
  94. [94]
    Naeher, L. P.; Brauer, M.; Lipsett, M.; Zelikoff, J. T.; Simpson, C. D.; Koenig, J. Q.; Smith, K. R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106.CrossRefGoogle Scholar
  95. [95]
    Hao, X. Q.; Jin, Z. L.; Yang, H.; Lu, G. X.; Bi, Y. P. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2017, 210, 45–56.CrossRefGoogle Scholar
  96. [96]
    He, L.; Li, M. X.; Xu, H. X.; Hu, B. Experimental studies on magnetization in the excited state by using the magnetic field effect of light scattering based on multi-layer graphene particles suspended in organic solvents. Nanoscale 2017, 9, 2563–2568.CrossRefGoogle Scholar
  97. [97]
    Bolton, J. R.; Bircher, K. G.; Tumas, W.; Tolman, C. A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl. Chem. 2001, 73, 627–637.CrossRefGoogle Scholar
  98. [98]
    International Atomic Energy Agency. Use of Irradiation for Chemical and Microbial Decontamination of Water, Wastewater and Sludge; International Atomic Energy Agency: Vienna, 2001.Google Scholar
  99. [99]
    Serpone, N. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol. A: Chem. 1997, 104, 1–12.CrossRefGoogle Scholar
  100. [100]
    Serpone, N.; Salinaro, A. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol. Pure Appl. Chem. 1999, 71, 303–320.CrossRefGoogle Scholar
  101. [101]
    Xing, M. Y.; Zhang, J. H.; Qiu, B. C.; Tian, B. Z.; Anpo, M.; Che, M. A brown mesoporous TiO2–x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920–1929.CrossRefGoogle Scholar
  102. [102]
    Qu, A. L.; Xie, H. L.; Xu, X. M.; Zhang, Y. Y.; Wen, S. W.; Cui, Y. F. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Appl. Surf. Sci. 2016, 375, 230–241.CrossRefGoogle Scholar
  103. [103]
    Ling, L.; Tugaoen, H.; Brame, J.; Sinha, S.; Li, C. H.; Schoepf, J.; Hristovski, K.; Kim, J.-H.; Shang, C.; Westerhoff, P. Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ. Sci. Technol. 2017, 51, 13319–13326.CrossRefGoogle Scholar
  104. [104]
    Anwer, H.; Park, J.-W. Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@Bi2WO6 core@shell composite for bisphenol A degradation in solar light. Appl. Catal. B: Environ. 2019, 243, 438–447.CrossRefGoogle Scholar
  105. [105]
    Schneider, J.; Bahnemann, D.; Ye, J. H.; Puma, G. L.; Dionysiou, D. D. Photocatalysis: Fundamentals and Perspectives; Royal Society of Chemistry: Cambridge, 2016.CrossRefGoogle Scholar
  106. [106]
    Li, X. P.; Qi, F.; Xue, Y. M.; Yu, C.; Jia, H. C.; Bai, Y. H.; Wang, S.; Liu, Z. Y.; Zhang, J.; Tang, C. C. Porous boron nitride coupled with CdS for adsorption-photocatalytic synergistic removal of RhB. RSC Adv. 2016, 6, 99165–99171.CrossRefGoogle Scholar
  107. [107]
    Liu, X.; Jin, A. L.; Jia, Y. S.; Xia, T. L.; Deng, C. X.; Zhu, M. H.; Chen, C. F.; Chen, X. S. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017, 405, 359–371.CrossRefGoogle Scholar
  108. [108]
    Vinodgopal, K.; Wynkoop, D. E.; Kamat, P. V. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 1996, 30, 1660–1666.CrossRefGoogle Scholar
  109. [109]
    Chen, F.; Xie, Y. D.; Zhao, J. C.; Lu, G. X. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 2001, 44, 1159–1168.CrossRefGoogle Scholar
  110. [110]
    Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B: Environ. 2002, 39, 75–90.CrossRefGoogle Scholar
  111. [111]
    Saquib, M.; Abu Tariq, M.; Faisal, M.; Muneer, M. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 2008, 219, 301–311.CrossRefGoogle Scholar
  112. [112]
    Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E. K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B: Environ. 2005, 57, 55–62.CrossRefGoogle Scholar
  113. [113]
    Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energ. Mat. Sol. C. 2003, 77, 65–82.CrossRefGoogle Scholar
  114. [114]
    Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226–232.CrossRefGoogle Scholar
  115. [115]
    Nagaraja, R.; Kottam, N.; Girija, C. R.; Nagabhushana, B. M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012, 215–216, 91–97.CrossRefGoogle Scholar
  116. [116]
    Tian, C. G.; Zhang, Q.; Wu, A. P.; Jiang, M. J.; Liang, Z. L.; Jiang, B. J.; Fu, H. G. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860.CrossRefGoogle Scholar
  117. [117]
    Kansal, S. K.; Singh, M.; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141, 581–590.CrossRefGoogle Scholar
  118. [118]
    Neppolian, B.; Choi, H. C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater. 2002, 89, 303–317.CrossRefGoogle Scholar
  119. [119]
    Mohamed, M. M.; Ahmed, S. A.; Khairou, K. S. Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: Effect of template and synthesis conditions. Appl. Catal. B: Environ. 2014, 150–151, 63–73.CrossRefGoogle Scholar
  120. [120]
    Han, C. C.; Ge, L.; Chen, C. F.; Li, Y. J.; Xiao, X. L.; Zhang, Y. N.; Guo, L. L. Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal. B: Environ. 2014, 147, 546–553.CrossRefGoogle Scholar
  121. [121]
    Chen, L.; Yin, S.-F.; Luo, S.-L.; Huang, R.; Zhang, Q.; Hong, T.; Au, P. C. T. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 2012, 51, 6760–6768.CrossRefGoogle Scholar
  122. [122]
    He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energ. Mat. Sol. C. 2015, 137, 175–184.CrossRefGoogle Scholar
  123. [123]
    Liu, Y.; Shi, Y. D.; Liu, X.; Li, H. X. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Appl. Surf. Sci. 2017, 396, 58–66.CrossRefGoogle Scholar
  124. [124]
    Reddy, K. H.; Martha, S.; Parida, K. M. Fabrication of novel p-BiOI/ n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg. Chem. 2013, 52, 6390–6401.CrossRefGoogle Scholar
  125. [125]
    Wang, W. J.; Cheng, H. F.; Huang, B. B.; Lin, X. J.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. J. Colloid Interface Sci. 2013, 402, 34–39.CrossRefGoogle Scholar
  126. [126]
    Di, J.; Xia, J. X.; Yin, S.; Xu, H.; Xu, L.; Xu, Y. G.; He, M. Q.; Li, H. M. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2014, 2, 5340–5351.CrossRefGoogle Scholar
  127. [127]
    Wang, S. M.; Guan, Y.; Wang, L. P.; Zhao, W.; He, H.; Xiao, J.; Yang, S. G.; Sun, C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Appl. Catal. B: Environ. 2015, 168–169, 448–457.CrossRefGoogle Scholar
  128. [128]
    Li, Z. S.; Yang, S. Y.; Zhou, J. M.; Li, D. H.; Zhou, X. F.; Ge, C. Y.; Fang, Y. P. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem. Eng. J. 2014, 241, 344–351.CrossRefGoogle Scholar
  129. [129]
    Zhan, W. T.; Ni, H. W.; Chen, R. S.; Wang, Z. Y.; Li, Y. W.; Li, J. H. One-step hydrothermal preparation of TiO2/WO3 nanocomposite films on anodized stainless steel for photocatalytic degradation of organic pollutants. Thin Solid Films 2013, 548, 299–305.CrossRefGoogle Scholar
  130. [130]
    Zheng, F.; Lu, H.; Guo, M.; Zhang, M.; Zhen, Q. Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J. Mater. Chem. C 2015, 3, 7612–7620.CrossRefGoogle Scholar
  131. [131]
    Gao, Y.; Liu, H. T. Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Mater. Chem. Phys. 2005, 92, 604–608.CrossRefGoogle Scholar
  132. [132]
    Wang, H.-J.; Sun, Y.-Y.; Wang, C.-F.; Cao, Y. Controlled synthesis, cytotoxicity and photocatalytic comparison of ZnO films photocatalysts supported on aluminum matrix. Chem. Eng. J. 2012, 198–199, 154–162.CrossRefGoogle Scholar
  133. [133]
    Liu, Z. S.; Wu, B. T.; Niu, J. N.; Huang, X.; Zhu, Y. B. Solvothermal synthesis of BiOBr thin film and its photocatalytic performance. Appl. Surf. Sci. 2014, 288, 369–372.CrossRefGoogle Scholar
  134. [134]
    Zhang, Y. R.; Wan, J.; Ke, Y. Q. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. J. Hazard. Mater. 2010, 177, 750–754.CrossRefGoogle Scholar
  135. [135]
    Arconada, N.; Castro, Y.; Durán, A. Photocatalytic properties in aqueous solution of porous TiO2-anatase films prepared by sol–gel process. Appl. Catal. A: Gen. 2010, 385, 101–107.CrossRefGoogle Scholar
  136. [136]
    Zhang, X. F.; Li, R.; Wang, Y. F.; Zhang, X. C.; Wang, Y. W.; Fan, C. M. Slow-releasing Cl–to prepare BiOCl thin film on Bi plate and its photocatalytic properties. Mater. Lett. 2016, 174, 126–128.CrossRefGoogle Scholar
  137. [137]
    Li, K.; Tang, Y. P.; Xu, Y. L.; Wang, Y. L.; Huo, Y. N.; Li, H. X.; Jia, J. P. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B: Environ. 2013, 140–141, 179–188.CrossRefGoogle Scholar
  138. [138]
    Rapsomanikis, A.; Apostolopoulou, A.; Stathatos, E.; Lianos, P. Ceriummodified TiO2 nanocrystalline films for visible light photocatalytic activity. J. Photochem. Photobiol. A: Chem. 2014, 280, 46–53.CrossRefGoogle Scholar
  139. [139]
    Mohamed, R. M.; Aazam, E. Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese J. Catal. 2013, 34, 1267–1273.CrossRefGoogle Scholar
  140. [140]
    Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Müller, M. M.; Kleebe, H.-J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764–7773.CrossRefGoogle Scholar
  141. [141]
    Sun, M.; Chen, G. D.; Zhang, Y. K.; Wei, Q.; Ma, Z. M.; Du, B. Efficient degradation of azo dyes over Sb2S3/TiO2 heterojunction under visible light irradiation. Ind. Eng. Chem. Res. 2012, 51, 2897–2903.CrossRefGoogle Scholar
  142. [142]
    Lu, W. Y.; Xu, T. F.; Wang, Y.; Hu, H. G.; Li, N.; Jiang, X. M.; Chen, W. X. Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Appl. Catal. B: Environ. 2016, 180, 20–28.CrossRefGoogle Scholar
  143. [143]
    Wang, W. Z.; Wang, J.; Wang, Z. Z.; Wei, X. Z.; Liu, L.; Ren, Q. S.; Gao, W. L.; Liang, Y. J.; Shi, H. L. p-n junction CuO/BiVO4 heterogeneous nanostructures: Synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 2014, 43, 6735–6743.CrossRefGoogle Scholar
  144. [144]
    Li, Y.; Liu, F.-T.; Chang, Y.; Wang, J.; Wang, C.-W. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays. Appl. Surf. Sci. 2017, 426, 770–780.CrossRefGoogle Scholar
  145. [145]
    Peng, Y.; Yu, P.-P.; Zhou, H.-Y.; Xu, A.-W. Synthesis of BiOI/Bi4O5I2/ Bi2O2CO3 p-n-p heterojunctions with superior photocatalytic activities. New J. Chem. 2015, 39, 8321–8328.CrossRefGoogle Scholar
  146. [146]
    Zha, R. H.; Nadimicherla, R.; Guo, X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 2015, 3, 6565–6574.CrossRefGoogle Scholar
  147. [147]
    Zhu, B. C.; Xia, P. F.; Li, Y.; Ho, W.; Yu, J. G. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017, 391, 175–183.CrossRefGoogle Scholar
  148. [148]
    He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610–13619.CrossRefGoogle Scholar
  149. [149]
    Zhu, C. S.; Zhang, L.; Jiang, B.; Zheng, J. T.; Hu, P.; Li, S. J.; Wu, M. B.; Wu, W. T. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 2016, 377, 99–108.CrossRefGoogle Scholar
  150. [150]
    Apte, S. K.; Garaje, S. N.; Arbuj, S. S.; Kale, B. B.; Baeg, J. O.; Mulik, U. P.; Naik, S. D.; Amalnerkar, D. P.; Gosavi, S. W. A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. J. Mater. Chem. 2011, 21, 19241–19248.CrossRefGoogle Scholar
  151. [151]
    Sharma, M.; Jain, T.; Singh, S.; Pandey, O. P. Photocatalytic degradation of organic dyes under UV–visible light using capped ZnS nanoparticles. Sol. Energy 2012, 86, 626–633.CrossRefGoogle Scholar
  152. [152]
    Liu, Y. G.; Ohko, Y.; Zhang, R. Q.; Yang, Y. N.; Zhang, Z. Y. Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. J. Hazard. Mater. 2010, 184, 386–391.CrossRefGoogle Scholar
  153. [153]
    Zhang, J. Q.; Yu, K.; Yu, Y. F.; Lou, L.-L.; Yang, Z. Q.; Yang, J. W.; Liu, S. X. Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes. J. Mol. Catal. A: Chem. 2014, 391, 12–18.CrossRefGoogle Scholar
  154. [154]
    Singh, S. A.; Madras, G. Photocatalytic degradation with combustion synthesized WO3 and WO3TiO2 mixed oxides under UV and visible light. Sep. Purif. Technol. 2013, 105, 79–89.CrossRefGoogle Scholar
  155. [155]
    Reutergådh, L. B.; Iangphasuk, M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and US photocatalysis. Chemosphere 1997, 35, 585–596.CrossRefGoogle Scholar
  156. [156]
    Yu, Z.; Yin, B. S.; Qu, F. Y.; Wu, X. Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chem. Eng. J. 2014, 258, 203–209.CrossRefGoogle Scholar
  157. [157]
    Repo, E.; Rengaraj, S.; Pulkka, S.; Castangnoli, E.; Suihkonen, S.; Sopanen, M.; Sillanpää, M. Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation. Sep. Purif. Technol. 2013, 120, 206–214.CrossRefGoogle Scholar
  158. [158]
    Soltani, N.; Saion, E.; Yunus, W. M. M.; Erfani, M.; Navasery, M.; Bahmanrokh, G.; Rezaee, K. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating. Appl. Surf. Sci. 2014, 290, 440–447.CrossRefGoogle Scholar
  159. [159]
    Tong, T. Z.; Zhang, J. L.; Tian, B. Z.; Chen, F.; He, D. N. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2008, 155, 572–579.CrossRefGoogle Scholar
  160. [160]
    Chen, J. F.; Zhong, J. B.; Li, J. Z.; Huang, S. T.; Hu, W.; Li, M. J.; Du, Q. Synthesis and characterization of novel Ag2CO3/g-C3N4 composite photocatalysts with excellent solar photocatalytic activity and mechanism insight. Mol. Catal. 2017, 435, 91–98.CrossRefGoogle Scholar
  161. [161]
    Liu, T. Y.; Liu, B.; Yang, L. F.; Ma, X. L.; Li, H.; Yin, S.; Sato, T.; Sekino, T.; Wang, Y. H. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B: Environ. 2017, 204, 593–601.CrossRefGoogle Scholar
  162. [162]
    Jiang, Y. H.; Liu, P. P.; Liu, Y.; Liu, X. F.; Li, F.; Ni, L.; Yan, Y. S.; Huo, P. W. Construction of amorphous Ta2O5/g-C3N4 nanosheet hybrids with superior visible-light photoactivities for organic dye degradation and mechanism insight. Sep. Purif. Technol. 2016, 170, 10–21.CrossRefGoogle Scholar
  163. [163]
    Tang, B.; Chen, H. Q.; He, Y. F.; Wang, Z. W.; Zhang, J.; Wang, J. P. Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Compos. Sci. Technol. 2017, 150, 54–64.CrossRefGoogle Scholar
  164. [164]
    Nguyen-Phan, T.-D.; Pham, V. H.; Yun, H.; Kim, E. J.; Hur, S. H.; Chung, J. S.; Shin, E. W. Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean J. Chem. Eng. 2011, 28, 2236–2241.CrossRefGoogle Scholar
  165. [165]
    Singh, S.; Khare, N. Reduced graphene oxide coupled CdS/CoFe2O4 ternary nanohybrid with enhanced photocatalytic activity and stability: A potential role of reduced graphene oxide as a visible light responsive photosensitizer. RSC Adv. 2015, 5, 96562–96572.CrossRefGoogle Scholar
  166. [166]
    Ganesh, I.; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci. World J. 2012, 2012, 127326.CrossRefGoogle Scholar
  167. [167]
    Pawar, R. C.; Khare, V.; Lee, C. S. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans. 2014, 43, 12514–12527CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of Environmental and Safety EngineeringAjou UniversitySuwonRepublic of Korea
  3. 3.Department of Chemical and Process EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations